Skip to main content

Attention and Dynamic, Task-Related Receptive Field Plasticity in Adult Auditory Cortex

  • Chapter
  • First Online:
Neural Correlates of Auditory Cognition

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 45))

Abstract

The brain is an extraordinarily adaptive and predictive machine, adapting to present demands and predicting the future, and reveals tremendous plasticity in multiple diverse forms, from birth through adulthood. Neuronal plasticity is a fundamental property of neurons and neuronal circuits because it facilitates adaptation to new environments, dynamically adjusts cortical sensory filters to improve processing of salient stimuli to optimize task performance, enables prediction of reward, and provides the basis for learning from experience. Depending upon the time scales and mechanisms involved in induction and persistence of receptive field (RF) changes, these changes may be described as ephemeral stimulus-driven adaptive plasticity, rapid attention-driven plasticity, or consolidated learning-induced plasticity. There are likely to be common molecular and synaptic mechanisms underlying all rapid RF transformations, but also some striking differences that contribute to auditory perception and cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A1:

primary auditory cortex

AC:

auditory cortex

ACh:

acetylcholine

BF:

best frequency of cell receptive field

CA:

conditioned avoidance

CS:

conditioning stimulus

EEG:

electroencephalographic

FC:

frontal cortex

fMRI:

functional magnetic resonance imaging

FRF:

frequency response fields

GABA:

γ-aminobutyric acid

IC:

inferior colliculus

MEG:

magentoencephalographic

MGB:

medial geniculate nucleus

NB:

nucleus basalis

PFC:

prefrontal cortex

PR:

positive reinforcement

RF:

receptive field

RFP:

receptive field plasticity

SSA:

stimulus-specific adaptation

STRF:

spectrotemporal receptive field

References

  • Ahveninen, J., Jääskeläinen, I. P., Raij, T., Bonmassar, G., Devore, S., Hämäläinen, M., et al. (2006). Task-modulated “what” and “where” pathways in human auditory cortex. Proceedings of the National Academy of Sciences of the USA, 103, 14608–14613.

    PubMed  CAS  Google Scholar 

  • Ahveninen, J., Hämäläinen, M., Jääskeläinen, I. P., Ahlfors, S. P., Huang, S., Lin, F. H., et al. (2011). Attention-driven auditory cortex short-term plasticity helps segregate relevant sounds from noise. Proceedings of the National Academy of Sciences of the USA, 108, 4182–4187.

    PubMed  CAS  Google Scholar 

  • Alain, C., Snyder, J. S., He, Y., & Reinke, K. S. (2007). Changes in auditory cortex parallel rapid perceptual learning. Cerebral Cortex, 17, 1074–1084.

    PubMed  Google Scholar 

  • Alain, C., Campeanu, S., & Tremblay, K. (2010). Changes in sensory evoked responses coincide with rapid improvement in speech identification performance. Journal of Cognitive Neuroscience, 22, 392–403.

    PubMed  Google Scholar 

  • Anton-Erxleben, K., Stephan, V. M., & Treue, S. (2009). Attention reshapes center-surround receptive field structure in macaque cortical area MT. Cerebral Cortex, 19, 2466–2478.

    PubMed  Google Scholar 

  • Antunes, F. M., Nelken, I., Covey, E., & Malmierca, M. S. (2010). Stimulus-specific adaptation in the auditory thalamus of the anesthetized rat. PLoS ONE, 5(11), e14071.

    PubMed  Google Scholar 

  • Arroyo, S., Bennett, C., Aziz, D., Brown, S.P., & Hestrin, S. (2012) Prolonged disynaptic inhibition in the cortex mediated by slow, non-a7 nicotinic excitation of a specific subset of cortical interneurons. Journal of Neuroscience, 32, 3859-3864.

    PubMed  CAS  Google Scholar 

  • Atiani, S., Elhilali, M., David, S. V., Fritz, J. B., & Shamma, S. A. (2009). Task difficulty and performance induce diverse adaptive patterns in gain and shape of primary auditory cortical receptive fields. Neuron, 61, 467–480.

    PubMed  CAS  Google Scholar 

  • Bajo, V. M., Nodal, F. R., Moore, D. R., & King, A. J. (2010). The descending corticocollicular pathway mediates learning-induced auditory plasticity. Nature Neuroscience, 13, 253–260.

    PubMed  CAS  Google Scholar 

  • Bakin, J. S., & Weinberger, N. M. (1996). Induction of a physiological memory in the cerebral cortex by stimulation of the nucleus basalis. Proceedings of the National Academy of Sciences of the USA, 93, 11219–11224.

    PubMed  CAS  Google Scholar 

  • Baluch, F., & Itti, L. (2011) Mechanisms of top-down attention. Trends in Neurosciences, 34, 210–224.

    PubMed  CAS  Google Scholar 

  • Bao, S., Chang, E. F., Woods, J., & Merzenich, M. M. (2004). Temporal plasticity in the primary auditory cortex induced by operant perceptual learning. Nature Neuroscience, 7, 974–981.

    PubMed  CAS  Google Scholar 

  • Bauerle, P., von der Behrens, W., Kossl, M., & Gaese, B. H. (2011). Stimulus-specific adaptation in the gerbil primary auditory thalamus is the result of a fast-frequency-specific habituation and is regulated by the corticofugal system. Journal of Neuroscience, 31, 9708–9722.

    PubMed  Google Scholar 

  • Beitel, R. E., Schreiner, C. E., Cheung, S. W., Wang, X., & Merzenich, M. M. (2003). Reward-dependent plasticity in the primary auditory cortex of adult monkeys trained to discriminate temporally modulated signals. Proceedings of the National Academy of Sciences of the USA, 100, 11070–11075.

    PubMed  CAS  Google Scholar 

  • Berkes, P., Orban, G., Lengyel, M., & Fiser, J. (2011). Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment. Science, 331, 83–87.

    PubMed  CAS  Google Scholar 

  • Bieszczad, K. M., & Weinberger, N. M. (2010a). Learning strategy trumps motivational level in determining learning-induced cortical plasticity. Neurobiology of Learning and Memory, 93, 229–239.

    PubMed  Google Scholar 

  • Bieszczad, K. M., & Weinberger, N. M. (2010b). Remodeling the cortex in memory: Increased use of a learning strategy increases the representational area of relevant acoustic cues. Neurobiology of Learning and Memory, 94, 127–144.

    PubMed  Google Scholar 

  • Bizley, J. K., Nodal, F. R., Nelken, I., & King, A. J. (2005). Functional organization of ferret auditory cortex. Cerebral Cortex, 15, 1637–1653.

    PubMed  Google Scholar 

  • Blake, D. T., Strata, F., Churchl, A. K., & Merzenich, M. M. (2002). Neural correlates of instrumental learning in primary auditory cortex. Proceedings of the National Academy of Sciences of the USA, 99, 10114–10119.

    PubMed  CAS  Google Scholar 

  • Brosch, M., & Schreiner, C. E. (1997). Time course of forward masking tuning curves in cat primary auditory cortex. Journal of Neurophysiology, 77, 923–943.

    PubMed  CAS  Google Scholar 

  • Brown, M., Irvine, D. R., & Park, V. N. (2004). Perceptual learning on an auditory frequency discrimination task by cats: Association with changes in primary auditory cortex. Cerebral Cortex, 14, 952–965.

    PubMed  Google Scholar 

  • Budinger, E., & Scheich, H. (2009). Anatomical connections suitable for the direct processing of neuronal information of different modalities via the rodent primary auditory cortex. Hearing Research, 258, 16–27.

    PubMed  Google Scholar 

  • Caporale, N., & Dan, Y. (2008). Spike timing-dependent plasticity: A Hebbian learning rule. Annual Review of Neuroscience, 31, 25–46.

    PubMed  CAS  Google Scholar 

  • Castro-Alamancos, M. A. (2004). Absence of sensory adaptation in neocortex during information processing states. Neuron, 41, 455–464.

    PubMed  CAS  Google Scholar 

  • Chandrasekaran, B., Homickel, J., Skoe, Nicol, T., & Kraus, N. (2009). Context-dependent encoding in the human auditory brainstem relates to hearing speech in noise: implications for developmental dyslexia. Neuron, 64, 311–319.

    PubMed  CAS  Google Scholar 

  • Chang, E. F., Rieger, J. W., Johnson, K., Berger, M. S., Barbaro, N. M., & Knight, R. T. (2010). Nature Neuroscience, 13, 1428–1432.

    PubMed  CAS  Google Scholar 

  • Chavez, C. M., McGaugh, J. L., & Weinberger, N. M. (2009). The basolateral amygdala modulates specific sensory memory representations in the cerebral cortex. Neurobiology of Learning and Memory, 91, 382–392.

    PubMed  Google Scholar 

  • Chen, K., Leischner, U., Rochefort, N., Nelken, I., & Konnerth, A. (2011). Functional mapping of single spines in cortical neurons in vivo. Nature, 475, 501–505.

    PubMed  CAS  Google Scholar 

  • Cherry, E. C. (1953). Some experiments on the recognition of speech, with one and two ears. Journal of the Acoustical Society of America, 25, 975–979.

    Google Scholar 

  • Cohen, M. R., & Maunsell, J. H. (2009). Attention improves performance primarily by reducing interneuronal correlations. Nature Neuroscience, 12, 1594–1600.

    PubMed  CAS  Google Scholar 

  • Cohen, M. R., & Maunsell, J. H. (2011). Using neuronal populations to study the mechanisms underlying spatial and feature attention. Neuron, 70, 1192–1204.

    PubMed  CAS  Google Scholar 

  • Cohen, Y. E., Hauser, M. D., & Russ, B. E. (2006). Spontaneous processing of abstract categorical information in the ventrolateral prefrontal cortex. Biological Letters, 2, 261–265.

    Google Scholar 

  • Condon, C. D., & Weinberger, N. M. (1991). Habituation produces frequency-specific plasticity of receptive fields in the auditory cortex. Behavioral Neuroscience, 105, 416–430.

    PubMed  CAS  Google Scholar 

  • Cruikshank, S. J., Urabe, H., Nurmikko, A. V., & Connors, B. W. (2010). Pathway-specific feedforward circuits between thalamus and neocortex revealed by selective optical stimulation of axons. Neuron, 65, 230–245.

    PubMed  CAS  Google Scholar 

  • Dahmen, J. C., Hartley, D. E., & King, A. J. (2008). Stimulus-timing-dependent plasticity of cortical frequency representation. Journal of Neuroscience, 28, 13629–13639.

    PubMed  CAS  Google Scholar 

  • Dahmen, J. C., Keating, P., Nodal, F. R., Schulz, A. L., & King, A. J. (2010). Adaptation to stimulus statistics in the perception and neural representation of auditory space. Neuron, 66, 937–948.

    PubMed  CAS  Google Scholar 

  • Dan, Y., & Poo, M. M. (2006). Spike timing-dependent plasticity: From synapse to perception. Physiological Reviews, 86, 1033–1048.

    PubMed  Google Scholar 

  • David, S. V., Hayden, B. Y., Mazer, J. A., & Gallant, J. L. (2008). Attention to stimulus features shifts spectral tuning of V4 neurons during natural vision. Neuron, 59, 509–521.

    PubMed  CAS  Google Scholar 

  • David, S. V., Fritz, J. B., & Shamma, S. A. (2012). Task reward structure shapes rapid receptive field plasticity in auditory cortex. Proceedings of the National Academy of Sciences of the USA, 109, 2144-2149.

    PubMed  CAS  Google Scholar 

  • Dean, I., Robinson, B. L., Harper, N. S., & McAlpine, D. (2005). Neural population coding of sound level adapts to stimulus statistics. Nature Neuroscience, 8, 1684–1689.

    PubMed  CAS  Google Scholar 

  • Dean, I., Robinson, B. L., Harper, N. S., & McAlpine, D. (2008). Rapid neural adaptation to sound level statistics. Journal of Neuroscience, 28, 6430–6438.

    PubMed  CAS  Google Scholar 

  • Debener, S., Herrmann, C. S., Kranczioch, C., Gembris, D., & Engel, A. K. (2003). Top-down attentional processing enhances auditory evoked gamma band activity. NeuroReport, 14, 683–686.

    PubMed  Google Scholar 

  • Deco, G., & Thiele, A. (2011). Cholinergic control of cortical network interactions enables feedback-mediated attentional modulation. European Journal of Neuroscience, 34, 146–157.

    PubMed  Google Scholar 

  • Depireux, D. A., Simon, J. Z., Klein, D. J., & Shamma, S. A. (2001). Spectro-temporal response field characterization with dynamic ripples in ferret primary auditory cortex. Journal of Neurophysiology, 85, 1220–1334.

    PubMed  CAS  Google Scholar 

  • Desai, R., Liebenthal, E., Waldron, E., & Binder, J. R. (2008). Left posterior temporal regions are sensitive to auditory categorization. Journal of Cognitive Neuroscience, 20, 1174–1188.

    PubMed  Google Scholar 

  • Duque, A., & McCormick, D. A. (2010). Circuit based localization of ferret prefrontal cortex. Cerebral Cortex, 20, 1020–1036.

    PubMed  Google Scholar 

  • Edeline, J.M., Pham, P., & Weinberger, N.M. (1993) Rapid development of learning induced receptive field plasticity in the auditory cortex. Behavioral Neuroscience, 107, 539–551.

    PubMed  CAS  Google Scholar 

  • Edeline, J. M. (1999). Learning-induced physiological plasticity in thalamo-cortical sensory systems: A critical evaluation of receptive field plasticity, map changes and their potential mechanisms. Progress in Neurobiology, 57, 165–224.

    PubMed  CAS  Google Scholar 

  • Edeline, J. M. (2003). Thalamo-cortical auditory receptive fields: Regulation by the states of vigilance, learning and the neuromodulatory systems. Experimental Brain Research, 153, 554–572.

    Google Scholar 

  • Edeline, J. M., Pham, P., & Weinberger, N. M. (1993). Rapid development of learning induced receptive field plasticity in the auditory cortex. Behavioral Neuroscience, 107, 539–551.

    PubMed  CAS  Google Scholar 

  • Edeline, J. M., Manunta, Y., & Hennevin, E. (2011). Induction of selective plasticity in the frequency tuning of auditory cortex and auditory thalamus neurons by locus coeruleus stimulation. Hearing Research, 274, 75–84.

    PubMed  Google Scholar 

  • Elhilali, M., Fritz, J. B., Chi, T.-S., & Shamma, S. A. (2007). Auditory cortical receptive fields: Stable entities with plastic abilities. Journal of Neuroscience, 27, 10372–10382.

    PubMed  CAS  Google Scholar 

  • Elhilali, M., Xiang, J., Shamma, S. A., & Simon, J. Z. (2009). Interaction between attention and bottom-up saliency mediates the representation of foreground and background in an auditory scene. PLoS Biology, 7(6), e1000129.

    PubMed  Google Scholar 

  • Feldman, D. (2009). Synaptic mechanisms for plasticity in neocortex. Annual Review of Neuroscience, 32, 33–55.

    PubMed  CAS  Google Scholar 

  • Fournier, G. N., Semba, K., & Rasmusson, D. D. (2004). Modality- and region-specific acetylcholine release in the rat neocortex. Neuroscience, 126, 257–262.

    PubMed  CAS  Google Scholar 

  • Fritz, J. B., Shamma, S. A., Elhilali, M., & Klein, D. J. (2003). Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex. Nature Neuroscience, 6, 1216–1223.

    PubMed  CAS  Google Scholar 

  • Fritz, J. B., Elhilali, M., & Shamma, S. (2005a). Differential dynamic plasticity of A1 receptive fields during multiple spectral tasks. Journal of Neuroscience, 25, 7623–7635.

    PubMed  CAS  Google Scholar 

  • Fritz, J. B., Elhilali, M., & Shamma, S. A. (2005b). Active listening: Task-dependent plasticity of receptive fields in primary auditory cortex. Hearing Research, 206, 159–176.

    PubMed  Google Scholar 

  • Fritz J. B., Elhilali, M., David, S. V., & Shamma, S. A. (2007a). Does attention play a role in dynamic receptive field adaptation to changing acoustic salience in A1? Hearing Research, 229, 186–203.

    PubMed  Google Scholar 

  • Fritz, J. B., Elhilali, M., & Shamma, S. A. (2007b). Adaptive receptive field changes during detection of complex spectral targets. Journal of Neurophysiology, 98, 2337–2346.

    PubMed  Google Scholar 

  • Fritz, J. B., Elhilali, M., David, S. V., & Shamma, S. A. (2007c). Auditory attention: Focusing the searchlight on sound. Current Opinion in Neurobiology, 17, 437–455.

    PubMed  CAS  Google Scholar 

  • Fritz, J. B., David, S. V., Radtke-Schuller, S., Yin, P., & Shamma, S. A. (2010). Adaptive, behaviorally-gated, persistent encoding of task-relevant auditory information in ferret frontal cortex. Nature Neuroscience, 13, 1011–1019.

    PubMed  CAS  Google Scholar 

  • Fritz, J. B., Atiani, S., David, S. V., Locastro, M., Elgueda, D., Radtke-Schuller, S., & Shamma, S. A. (2011). Comparison of task-related plasticity in ferret primary and secondary auditory cortex. Society for Neuroscience Meeting (November, 2011 in Washington, DC), Abstract 173.06.

    Google Scholar 

  • Froemke, R. C., Merzenich, M. M., & Schreiner, C. E. (2007). A synaptic memory trace for cortical receptive field plasticity. Nature, 450, 425–429.

    PubMed  CAS  Google Scholar 

  • Galvan, V. V., & Weinberger, N. M. (2002). Long-term consolidation and retention of learning-induced tuning plasticity in the auditory cortex of the guinea pig. Neurobiology of Learning and Memory, 77, 78–108.

    PubMed  Google Scholar 

  • Galvan, V. V., Chen, J., & Weinberger, N. M. (2001). Long-term frequency tuning of local field potentials in the auditory cortex of the waking guinea pig. Journal of Association for Research in Otolaryngology, 2, 199–215.

    CAS  Google Scholar 

  • Galvan, V.V., & Weinberger, N.M. (2002) Long-term consolidation and retention of learning-induced tuning plasticity in the auditory cortex of the guinea pig. Neurobiology of Learning and Memory, 77, 78–108.

    PubMed  Google Scholar 

  • Gavornik, J. P., Shuler, M. G., Loewenstein, Y., Bear, M. F., & Shouval, H. Z. (2009). Learning reward timing in cortex through reward dependent expression of synaptic plasticity. Proceedings of the National Academy of Sciences of the USA, 106, 6826–6831.

    PubMed  CAS  Google Scholar 

  • Gilbert, C. D., & Sigman, M. (2007). Brain states: top-down influences in sensory processing. Neuron, 54, 677–696.

    PubMed  CAS  Google Scholar 

  • Goard, M., & Dan, Y. (2009). Basal forebrain activation enhances cortical coding of natural scenes. Nature Neuroscience, 12, 1444–1449.

    PubMed  CAS  Google Scholar 

  • Golmayo, L., Nunez, A., & Zaborszky, L. (2003). Electrophysiological evidence for the existence of a posterior cortical-prefrontal-basal forebrain circuitry in modulating sensory responses in visual and somatosensory rat cortical areas. Neuroscience, 119, 597–609.

    PubMed  CAS  Google Scholar 

  • Gyengesi, E., Zaborszky, L., & Detari, L. (2008). The effect of prefrontal stimulation on the firing of basal forebrain neurons in the urethane anesthetized rat. Brain Research Bulletin, 75, 570–580.

    PubMed  CAS  Google Scholar 

  • Harris, K. D., & Thiele, A. (2011). Cortical state and attention. Nature Reviews Neuroscience, 12, 509–523.

    PubMed  CAS  Google Scholar 

  • Hasselmo, M. E., & Sarter, M. (2011). Modes and models of forebrain cholinergic neuromodulation of cognition. Neuropsychopharmacology, 36, 52–73.

    PubMed  CAS  Google Scholar 

  • Headley, D. B., & Weinberger, N. M. (2011). Gamma-band activation predicts both associative memory and cortical plasticity. Journal of Neuroscience, 31, 12748–12758.

    PubMed  CAS  Google Scholar 

  • Heffner, H. E., & Heffner, R. S. (1995). Conditioned avoidance. In G. Klump, R. Dooling, R. R. Fay, & W. C. Stebbins (Eds.), Methods in comparative psychoacoustics (pp. 79–94). Basel: Birkhauser Verlag.

    Google Scholar 

  • Hensch, T. K. (2005). Critical period plasticity in local cortical circuits. Nature Reviews Neuroscience, 6, 877–888.

    PubMed  CAS  Google Scholar 

  • Herrero, J. L., Roberts, M. J., Delicato, L. S., Gieselmann, M. A., Dayan, P., & Thiele, A. (2008). Acetylcholine contributes through muscarinic receptors to attentional modulation in V1. Nature, 454, 1110–1114.

    PubMed  CAS  Google Scholar 

  • Ilango, A., Wetzel, W., Scheich, H., & Ohl, F. W. (2010). The combination of appetitive and aversive reinforcers and the nature of their interaction during auditory learning. Neuroscience, 166, 752–762.

    PubMed  CAS  Google Scholar 

  • Jääskeläinen, I. P., Ahveninen, J., Belliveau, J. W., Raij, T., & Sams, M. (2007). Short-term plasticity in auditory cognition. Trends in Neuroscience, 30, 653–661.

    Google Scholar 

  • Jääskeläinen, I. P., Ahveninen, J., Andermann, M. L., Belliveau, J. W., Raij, T., & Sams, M. (2011). Short-term plasticity as a neural mechanism supporting memory and attentional functions. Brain Research, 1422, 66–81.

    PubMed  Google Scholar 

  • Jafari, M. R., Zhang, Y. F., & Yan, J. (2007). Multiparametric changes in the receptive fields of cortical auditory neurons induced by thalamic activation in the mouse. Cerebral Cortex, 17, 71–80.

    PubMed  Google Scholar 

  • Jaramillo, S., & Zador, A. M. (2011). The auditory cortex mediates the perceptual effects of acoustic temporal expectation. Nature Neuroscience, 14, 246–251.

    PubMed  CAS  Google Scholar 

  • Kacelnik, O., Nodal, F. R., Parson, C. H., & King, A. J. (2006). Training-induced plasticity of auditory localization in adult mammals. PLoS Biology, 4, 627–638.

    CAS  Google Scholar 

  • Kilgard, M., & Merzenich, M. M. (1998a). Cortical map reorganization enabled by nucleus basalis activity. Science, 279, 1714–1718.

    PubMed  CAS  Google Scholar 

  • Kilgard, M., & Merzenich, M. M. (1998b). Plasticity of temporal information processing in the primary auditory cortex. Nature Neuroscience, 1, 727–731.

    PubMed  CAS  Google Scholar 

  • King, A. J., Dahmen, J. C., Keating, P., Leach, N. D., Nodal, F. R., & Bajo, V. M. (2011). Neural circuits underlying adaptation and learning in the perception of auditory space. Neuroscience and Biobehavioral Reviews, 35, 2129–2139.

    PubMed  Google Scholar 

  • Kisley, M. A., & Gerstein, G. L. (2001). Daily variation and appetitive conditioning-induced plasticity of auditory cortex receptive fields. European Journal of Neuroscience, 13, 1993–2003.

    PubMed  CAS  Google Scholar 

  • Klein, D. J., Depireux, D. A., Simon, J. Z., & Shamma, S. A. (2000). Robust spectrotemporal reverse correlation for the auditory system: Optimizing stimulus design. Journal of Computational Neuroscience, 9, 85–111.

    PubMed  CAS  Google Scholar 

  • Kluge, C., Bauer, M., Leff, A. P., Heinze, H. J., Dolan, R. J., & Driver, J. (2011). Plasticity of human auditory-evoked fields induced by shock conditioning and contingency reversal. Proceedings of the National Academy of Sciences of the USA, 108, 12545–12550.

    PubMed  CAS  Google Scholar 

  • Kover, H., & Bao, S. (2010). Cortical plasticity as a mechanism for storing Bayesian priors in sensory perception. PLoS One, 5, e10497.

    PubMed  Google Scholar 

  • Kudoh, M., Seki, K., & Shibuki, K. (2004). Sound sequence discrimination learning is dependent on cholinergic inputs to the rat auditory cortex. Neuroscience Research, 50, 113–123.

    PubMed  Google Scholar 

  • Kumpik, D. P., Kacelnik, O., & King, A. J. (2010). Adaptive reweighting of auditory localization cues in response to chronic unilateral earplugging in humans. Journal of Neuroscience, 30, 4883–4894.

    PubMed  CAS  Google Scholar 

  • Kvale, M. N., & Schreiner, C. E. (2004). Short-term adaptation of auditory receptive fields to dynamic stimuli. Journal of Neurophysiology, 91, 604–612.

    PubMed  Google Scholar 

  • Leach, N. D., Bajo, V. M., King, A. J., David, S. V., Shamma, S. A., & Fritz, J. B. (2010). Selective responses to salient acoustic stimuli in nucleus basalis of the behaving ferret. Society for Neuroscience Meeting (November, 2010 in San Diego, California, USA). Abstract 18.7

    Google Scholar 

  • Lee, C. C., & Middlebrooks, J. C. (2011). Auditory cortex spatial sensitivity sharpens during task performance. Nature Neuroscience, 14, 108–114.

    PubMed  CAS  Google Scholar 

  • Lee, J. H., Russ, B. E., Orr, L. E., & Cohen, Y. E. (2009). Prefrontal activity predicts monkeys’ decisions during an auditory category task. Frontiers in Integrative Neuroscience, 3, 16.

    PubMed  Google Scholar 

  • Letzkus, J.J., Wolff, S.B., Meyer, E.M., Tovote, P., Courtin, J., Herry, C., Luthi, A. (2011) A disinhibitory microcircuit for associate fear learning in the auditory cortex. Nature, 480, 331-335.

    PubMed  CAS  Google Scholar 

  • Lin, S. C., & Nicolelis, M. A. (2008). Neuronal ensemble bursting in the basal forebrain encodes salience irrespective of valence. Neuron, 59, 138–149.

    PubMed  CAS  Google Scholar 

  • Liu, X. Basavaraj, S., Krishnan, R., & Yan, J. (2011). Contributions of the thalamocortical system towards sound. Neuroscience and Biobehavioral Reviews, 35, 2155–2161.

    PubMed  Google Scholar 

  • McMains, S., & Kastner, S. (2011). Interaction of top-down and bottom-up mechanisms in human visual cortex. Journal of Neuroscience, 31, 587–597.

    PubMed  CAS  Google Scholar 

  • McManus, J. N., Li, W., & Gilbert, C. D. (2011). Adaptive shape processing in primary visual cortex. Proceedings of the National Academy of Sciences of the USA, 108, 9739–9746.

    PubMed  CAS  Google Scholar 

  • Mesgarani, N., Fritz, J. B., & Shamma, S. A. (2010). A computational model of rapid task-related plasticity of auditory cortical receptive fields. Journal of Computational Neuroscience, 28, 19–27.

    PubMed  Google Scholar 

  • Mesgarani, N., & Chang, E. F. (2012). Robust cortical representation of attended speaker in multi-talker speech perception. Nature (published online 18 April 2012) doi:10.1038/nature11020

    Google Scholar 

  • Metherate, R., Kaur, S., Kawai, H., Lazar, R., Liang, K., Rose, H.J. (2005) Spectral integration in auditory cortex: mechanisms and modulation. Hearing Research, 206, 146-158.

    PubMed  Google Scholar 

  • Metherate, R. (2011). Functional connectivity and cholinergic modulation in auditory cortex. Neuroscience and Biobehavioral Reviews, 35, 2058–2063.

    PubMed  Google Scholar 

  • Miller, L. M., Escabi, M. A., Read, H. L., & Schreiner, C. E. (2002). Spectrotemporal receptive fields in the lemniscal auditory thalamus and cortex. Journal of Neurophysiology, 87, 516–527.

    PubMed  Google Scholar 

  • Miranda, J. A., & Liu, R. C. (2009). Dissecting natural sensory plasticity: Hormones and experience in a maternal context. Hearing Research, 252, 21–28.

    PubMed  CAS  Google Scholar 

  • Molina-Luna, K., Hertler, B., Bultrago, M. M., & Luft, A. R. (2008). Motor learning transiently changes cortical somatotopy. NeuroImage, 40, 1748–1754.

    PubMed  Google Scholar 

  • Mooney, D. M., Zhang, L., Basile, C., Senatorov, V.V., Ngsee, J., Omar, A., & Hu, B. (2004). Distinct forms of cholinergic modulation in parallel thalamic sensory pathways. Proceedings of the National Academy of Sciences of the USA, 101, 320–324.

    PubMed  CAS  Google Scholar 

  • Morishita, H., Miwa, J.M., Heintz, N., Hensch, T.K. (2010) Lynx1, a cholinergic brake, limits plasticity in adult visual cortex. Science, 330, 1238-1240.

    PubMed  CAS  Google Scholar 

  • Mossbridge, J. A., Fitzgerald, M. B., O’Connor, E. S., & Wright, B. A. (2006). Perceptual-learning evidence for separate processing of asynchrony and order tasks. Journal of Neuroscience, 26, 12708–12716.

    PubMed  CAS  Google Scholar 

  • Mysore, S. P., & Knudsen, E. I. (2011). The role of a midbrain network in competitive stimulus selection. Current Opinion in Neurobiology, 21, 653–660.

    PubMed  CAS  Google Scholar 

  • Nelson, C. L., Sarter, M., & Bruno, J. P. (2005). Prefrontal cortical modulation of acetylcholine release in posterior parietal cortex. Neuroscience, 132, 347–359.

    PubMed  CAS  Google Scholar 

  • Otazu, G. H., Tai, L. H., Yang, Y., & Zador, T. Z. (2009). Engaging in an auditory task suppresses responses in auditory cortex. Nature Neuroscience, 12, 646–654.

    PubMed  CAS  Google Scholar 

  • Paltoglou, A. E., Sumner, C. J., & Hall, D. A. (2009). Examining the role of frequency specificity in the enhancement and suppression of human cortical activity by auditory selective attention. Hearing Research, 257, 106–118.

    PubMed  Google Scholar 

  • Rabinowitz, N. C., Willmore, B. D. B., Schnupp, J. W. H., & King, A. J. (2011). Contrast gain control in auditory cortex. Neuron, 70, 1178–1191.

    PubMed  CAS  Google Scholar 

  • Rahne, T., & Sussman, E. (2009). Neural representations of auditory input accommodate to the context in a dynamically changing acoustic environment. European Journal of Neuroscience, 29, 205–211.

    PubMed  Google Scholar 

  • Raizada, R. D., & Poldrack, R. A. (2007). Selective amplification of stimulus differences during categorical processing of speech. Neuron, 56, 726–740.

    PubMed  CAS  Google Scholar 

  • Rasmusson, D. D., Smith, S. A., & Semba, K. (2007). Inactivation of prefrontal cortex abolishes cortical acetylcholine release evoked by sensory or sensory pathway stimulation in the rat. Neuroscience, 149, 232–241.

    PubMed  CAS  Google Scholar 

  • Raz, A., & Buhle, J. (2006). Typologies of attentional networks. Nature Reviews Neuroscience, 7, 367–379.

    PubMed  CAS  Google Scholar 

  • Recanzone, G., Schreiner, C., & Merzenich, M. M. (1993). Plasticity in the frequency representation of primary auditory cortex, following discrimination training in adult owl monkeys. Journal of Neuroscience, 13, 87–103.

    PubMed  CAS  Google Scholar 

  • Reches, A., & Gutfreund, Y. (2008). Stimulus-specific adaptations in the gaze control system of the barn owl. Journal of Neuroscience, 28, 1523–1533.

    PubMed  CAS  Google Scholar 

  • Reed, A., Riley, J., Carraway, R., Carrasco, A., Perez, C., Jakkamsetti, V., & Kilgard, M. P. (2011). Cortical map plasticity improves learning but is not necessary for improved performance. Neuron, 70, 121–131.

    PubMed  CAS  Google Scholar 

  • Reyes, A. D. (2011). Synaptic short-term plasticity in auditory cortical circuits. Hearing Research, 279, 60–66.

    PubMed  Google Scholar 

  • Rioult-Pedotti, M. S., Friedman, D., Hess, G., & Donoghue, J. P. (1998). Strengthening of horizontal cortical connections following skill learning. Nature Neuroscience, 3, 230–234.

    Google Scholar 

  • Rioult-Pedotti, M. S., Friedman, D., & Donoghue, J. P. (2000). Learning-induced LTP in the neocortex. Science, 290, 533–536.

    PubMed  CAS  Google Scholar 

  • Robinson, B. L., & McAlpine, D. (2009). Gain control mechanisms in the auditory pathway. Current Opinion in Neurobiology, 19, 402–407.

    PubMed  CAS  Google Scholar 

  • Roelfsema, P. R., Van Ooyen, A., & Watanabe, T. (2010). Perceptual learning rules based on reinforces and attention. Trends in Cognitive Neuroscience, 14, 64–71.

    Google Scholar 

  • Russ, B. E., Lee, Y. S., & Cohen, Y. E. (2007). Neural and behavioral correlates of auditory categorization. Hearing Research, 229, 204–212.

    PubMed  Google Scholar 

  • Rutkowski, R. G., & Weinberger, N. M. (2005). Encoding of learned importance of sound by magnitude of representational area in primary auditory cortex. Proceedings of the National Academy of Sciences of the USA, 102, 13664–13669.

    PubMed  CAS  Google Scholar 

  • Sarter, M., Parikh, V., & Howe, W. M. (2009). Phasic acetylcholine release and the volume transmission hypothesis: time to move on. Nature Reviews Neuroscience, 10, 383–390.

    PubMed  CAS  Google Scholar 

  • Scheich, H., Brechmann, A., Brosch, M., Budinger, E., & Ohl, F. W. (2007). The cognitive auditory cortex: Task-specificity of stimulus representations. Hearing Research, 229, 213–224.

    PubMed  Google Scholar 

  • Scheich, H., Brechmann, A., Brosch, M., Budinger, E., Ohl, F. W., Selezneva, E., et al. (2011). Behavioral semantics of learning and crossmodal processing in auditory cortex: The semantic processor concept. Hearing Research, 271, 3–15.

    PubMed  Google Scholar 

  • Shuler, M. G., & Bear, M. F. (2006). Reward timing in the primary visual cortex. Science, 311, 1606–1609.

    PubMed  CAS  Google Scholar 

  • Siucinska, F., & Kossut, M. (1996). Short-lasting classical conditioning induces reversible changes of representational maps of vibrissae in mouse SI cortex—a 2 DG study. Cerebral Cortex, 6, 506–513.

    PubMed  CAS  Google Scholar 

  • Siucinska, F., & Kossut, M. (2004). Experience-dependent changes in cortical whisker representation in the adult mouse: A 2-deoxyglucose study. Neuroscience, 127, 961–971.

    PubMed  CAS  Google Scholar 

  • Skoe, E., & Kraus, N. (2010). Hearing it again and again: On-line sub-cortical plasticity in humans. PLoS One, 5, e13645.

    PubMed  Google Scholar 

  • Soto, G., Kopell, N., & Sen, K. (2006). Network architecture, receptive fields, and neuromodulation: Computational and functional implications of cholinergic modulation in primary auditory cortex. Journal of Neurophysiology, 96, 2972–2983.

    PubMed  Google Scholar 

  • Spierer, L., Tardif, E., Sperdin, H., Murray, M. M., & Clarke, S. (2007). Learning-induced plasticity in auditory spatial representations revealed by electrical neuroimaging. Journal of Neuroscience, 27, 5474–5483.

    PubMed  CAS  Google Scholar 

  • Spierer, L., De Lucia, M., Bernasconi, F., Grivel, J., Bourquin, N. M., Clarke, S., & Murray, M. M. (2011). Learning-induced plasticity in human audition: Objects, time and space. Hearing Research, 271, 88–102.

    PubMed  Google Scholar 

  • Takata, N., Mishima, T., Hisatsune, C., Nagai, T., Ebisui, E., Mikoshiba, K., & Hirase, H. (2011). Astrocyte calcium signaling transforms cholinergic modulation to cortical plasticity in vivo. Journal of Neuroscience, 31, 18155–18165.

    CAS  Google Scholar 

  • Thiel, C. M. (2007). Pharmacological modulation of learning-induced plasticity in human auditory cortex. Restorative Neurology and Neuroscience, 25, 435–443.

    PubMed  CAS  Google Scholar 

  • Thiel, C. M., Friston, K. J., & Dolan, R. J. (2002). Cholinergic modulation of experience-dependent plasticity in human auditory cortex. Neuron, 35, 567–574.

    PubMed  CAS  Google Scholar 

  • Treue, S., & Martinez-Trujillo, J. C. (1999). Feature-based attention influences motion processing gain in macaque visual cortex. Nature, 399, 575–579.

    PubMed  CAS  Google Scholar 

  • Tsunada, J., Lee, J. H., & Cohen, Y. E. (2011). Representation of speech categories in the primate auditory cortex. Journal of Neurophysiology, 105, 2634–2646.

    PubMed  Google Scholar 

  • Ulanovsky, N., Las, L., & Nelken, I. (2003). Processing of low-probability sounds by cortical neurons. Nature Neuroscience, 6, 391–398.

    PubMed  CAS  Google Scholar 

  • Ulanovsky, N., Las, L., Farkas, D., & Nelken, I. (2004). Multiple time scales of adaptation in auditory cortex neurons. Journal of Neuroscience, 24, 10440–10453.

    PubMed  CAS  Google Scholar 

  • Van Wanrooij, M. M., & Van Opstal, A. J. (2005). Relearning sound localization with a new ear. Journal of Neuroscience, 25, 5413–5424.

    PubMed  CAS  Google Scholar 

  • Wang, L., Conner, J. M., Rickert, J., & Tuszynski, M. H. (2011). Structural plasticity within highly specific neuronal populations identifies a unique parcellation of motor learning in the adult brain. Proceedings of the National Academy of Sciences of the USA, 108, 2545–2550.

    CAS  Google Scholar 

  • Watkins, P. V., & Barbour, D. L. (2008). Specialized neuronal adaptation for preserving input sensitivity. Nature Neuroscience, 11, 1259–1261.

    PubMed  CAS  Google Scholar 

  • Watkins, P. V., & Barbour, D. L. (2011). Level-tuned neurons in primary auditory cortex adapt differently to loud versus soft sounds. Cerebral Cortex, 21, 178–190.

    PubMed  Google Scholar 

  • Weinberger, N. M. (2004). Specific long-term memory traces in primary auditory cortex. Nature Reviews Neuroscience, 5, 279–290.

    PubMed  CAS  Google Scholar 

  • Weinberger, N. M. (2011). Reconceptualizing the primary auditory cortex: Learning, memory and specific plasticity. In J. Winer & C. Schreiner (Eds.), The auditory cortex (pp. 465–491). New York: Springer.

    Google Scholar 

  • Wen, B., Wang, G. I., Dean, I., & Delgutte, B. (2009). Dynamic range adaptation to sound level statistics in the auditory nerve. Journal of Neuroscience, 29, 13797–13808.

    PubMed  CAS  Google Scholar 

  • Winkler, I., Denham, S. L., & Nelken, I. (2009). Modelling the auditory scene: predictive regularity representations and perceptual objects. Trends in Cognitive Sciences, 13, 532–540.

    PubMed  Google Scholar 

  • Winkowski, D. E., Bandyopadhyay, S., Shamma, S. A., & Kanold, P. O. (2012). Rapid plasticity of auditory cortical circuits induced by prefrontal cortex activation (submitted)

    Google Scholar 

  • Xiong, Y., Zhang, Y., & Yan, J. (2009). The neurobiology of sound-specific auditory plasticity: A core neural circuit. Neuroscience and Biobehavioral Reviews, 33, 1178–1184.

    PubMed  Google Scholar 

  • Xu, T., Yu, X., Perlik, A. J., Tobin, W. F., Zweig, J. A., Tennant, K., et al. (2009). Rapid formation and selective stabilization of synapses for enduring motor memories. Nature, 462, 915–919.

    PubMed  CAS  Google Scholar 

  • Yotsumoto, Y., Watanabe, T., & Sasaki, Y. (2008). Different dynamics of performance and brain activation in the time course of perceptual learning. Neuron, 57, 827–833.

    PubMed  CAS  Google Scholar 

  • Yuan, K., Barker, A. J., Seybold, B., Carcea, I., Martins, A. R. O., Wachs, M., et al. (2011). Long-term modification of cortical synapses improves sensory perception. Society for Neuroscience Meeting, November, 2011, Washington, DC Abstract 869.10.

    Google Scholar 

  • Zhou, X., & Merzenich, M. (2008). Enduring effects of early structured noise exposure on temporal modulation in the primary auditory cortex. Proceedings of the National Academy of Sciences of the USA, 105, 4423–4428.

    CAS  Google Scholar 

  • Zhou, X., de Villers-Sidani, E., Panizzutti, R., & Merzenich, M. M. (2010). Successive-signal biasing for a learned sound sequence. Proceedings of the National Academy of Sciences of the USA, 107, 14839–14844.

    CAS  Google Scholar 

  • Zikopoulos, B., & Barbas, H. (2006). Prefrontal projections to the thalamic reticular nucleus form a unique circuit for attentional mechanisms. Journal of Neuroscience, 26, 7348–7361.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan B. Fritz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fritz, J.B., David, S., Shamma, S. (2013). Attention and Dynamic, Task-Related Receptive Field Plasticity in Adult Auditory Cortex. In: Cohen, Y., Popper, A., Fay, R. (eds) Neural Correlates of Auditory Cognition. Springer Handbook of Auditory Research, vol 45. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2350-8_9

Download citation

Publish with us

Policies and ethics