Skip to main content

Neurophysiology of Attention and Memory Processing

  • Chapter
  • First Online:
Neural Correlates of Auditory Cognition

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 45))

Abstract

The “standard cocktail party” description of hearing voices in a crowded environment and being able to tune in to a conversation in which the person quickly identifies his or her name being mentioned may seem simple on the surface because people and animals can be conditioned to respond to important signals. However, Cherry’s 1953 cocktail party example is compelling and often used because it invokes many processes ubiquitous to auditory processing, such as frequency encoding and stream segregation to attention and memory. One must remember the sound of his or her own name and be able to separate that specific sound from the other sounds that are translated into background noise in reference to the attended source. Responses to well-known signals, such as names, are the product of experience-induced plasticity located many places along the auditory pathway. This translation into the unique processing of a specific stimulus is an example of long-term memory in the auditory system. This evoked response to names is not only an example of long-term memory in the auditory system, but it also engenders attention to the conversation where it originated, bringing in working and short-term memory as well. The following sections discuss what is known of the cortical processing related to auditory attention and memory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

auditory cortex

BF:

best frequency

CF:

characteristic frequency

CS:

conditioned stimulus

DMTS:

delayed matching-to-sample

dTP:

dorsal temporal pole

ERP:

event-related potential

ISI:

interstimulus interval

LED:

light-emitting diode

ITC:

inferior temporal cortex

LFP:

local field potential

LIP:

lateral intraparietal

MGB:

medial geniculate body

PETH:

perievent time histogram

PFC:

prefrontal cortex

PST:

peristimulus time

SC:

superior colliculus

SOA:

stimulus onset asynchrony

STG:

superior temporal gyrus

STRF:

spectrotemporal receptive field

TORCS:

temporally orthogonal ripple combinations

TRN:

thalamic reticular nucleus

vPFC:

ventrolateral PFC

WM:

working memory

References

  • Artchakov, D., Tikhonravov, D., Vuontela, V., Linnankoski, I., Korvenoia, A., & Carlson, S. (2007). Processing of auditory and visual location information in the monkey prefrontal cortex. Experimental Brain Research, 180(3), 469–479.

    Google Scholar 

  • Artchakov, D., Tikhonravov, D., Ma, Y., Neuvonen, T., Linnankoski, I., & Carlson, S. (2009). Distracters impair and create working memory-related neuronal activity in the prefrontal cortex. Cerebral Cortex, 19(11), 2680–2689.

    PubMed  Google Scholar 

  • Atiani, S., Elhilali, M., David, S. V., Fritz, J. B., & Shamma, S. A. (2009). Task difficulty and performance induce diverse adaptive patterns in gain and shape of primary auditory cortical receptive fields. Neuron, 61(3), 467–480.

    CAS  PubMed  Google Scholar 

  • Bakin, J. S., & Weinberger, N. M. (1990). Classical conditioning induces CS-specific receptive field plasticity in the auditory cortex of the guinea pig. Brain Research, 536(1–2), 271–286.

    CAS  PubMed  Google Scholar 

  • Bakin, J. S., South, D. A., & Weinberger, N. M. (1996). Induction of receptive field plasticity in the auditory cortex of the guinea pig during instrumental avoidance conditioning. Behavioral Neuroscience, 110(5), 905–913.

    CAS  PubMed  Google Scholar 

  • Barbas, H., & Mesulam, M. (1981). Organization of afferent input to subdivisions of area 8 in the rhesus monkey. Journal of Comparative Neurology, 200(3), 407–431.

    CAS  PubMed  Google Scholar 

  • Barbas, H., & Pandya, D. N. (1989). Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. Journal of Comparative Neurology, 286(3), 356–375.

    Google Scholar 

  • Bartlett, E. L., & Wang, X. (2005). Long-lasting modulation by stimulus context in primate auditory cortex. Journal of Neurophysiology, 94(1), 83–104.

    PubMed  Google Scholar 

  • Beitel, R. E., Schreiner, C. E., Cheung, S. W., Wang, X., & Merzenich, M. M. (2003). Reward-dependent plasticity in the primary auditory cortex of adult monkeys trained to discriminate temporally modulated signals. Proceedings of the National Academy of Sciences of the USA, 100(19), 11070–11075.

    CAS  PubMed  Google Scholar 

  • Benson, D. A., & Hienz, R. D. (1978). Single-unit activity in the auditory cortex of monkeys selectively attending left vs. right ear stimuli. Brain Research, 159(2), 307–320.

    CAS  PubMed  Google Scholar 

  • Blake, D. T., Strata, F., Churchland, A. K., & Merzenich, M. M. (2002). Neural correlates of instrumental learning in primary auditory cortex. Proceedings of the National Academy of Sciences of the USA, 99(15), 10114–10119.

    Google Scholar 

  • Bodner, M., Kroger, J., & Fuster, J. M. (1996). Auditory memory cells in dorsolateral prefrontal cortex. NeuroReport, 7(12), 1905–1908.

    CAS  PubMed  Google Scholar 

  • Bon, L., & Lucchetti, C. (2006). Auditory environmental cells and visual fixation effect in area 8B of macaque monkey. Experimental Brain Research, 168(3), 441–449.

    Google Scholar 

  • Brechmann, A., Gaschler-Markefski, B., Sohr, M., Yoneda, K., Kaulisch, T., & Scheich, H. (2007). Working memory specific activity in auditory cortex: Potential correlates of sequential processing and maintenance. Cerebral Cortex, 17(11), 2544–2552.

    PubMed  Google Scholar 

  • Brosch, M., & Schreiner, C. E. (1997). Time course of forward masking tuning curves in cat primary auditory cortex. Journal of Neurophysiology, 77(2), 923–943.

    CAS  PubMed  Google Scholar 

  • Brosch, M., Schulz, A., & Scheich, H. (1999). Processing of sound sequences in macaque auditory cortex: Response enhancement. Journal of Neurophysiology, 82(3), 1542–1559.

    CAS  PubMed  Google Scholar 

  • Brosch, M., Selezneva, E., & Scheich, H. (2005). Nonauditory events of a behavioral procedure activate auditory cortex of highly trained monkeys. Journal of Neuroscience, 25(29), 6797–6806.

    CAS  PubMed  Google Scholar 

  • Buffalo, E. A., Ramus, S. J., Clark, R. E., Teng, E., Squire, L. R., & Zola, S. M. (1999). Dissociation between the effects of damage to perirhinal cortex and area TE. Learning and Memory, 6(6), 572–599.

    CAS  PubMed  Google Scholar 

  • Cherry, E. C. (1953). Some experiments on the recognition of speech, with one and with two ears. Journal of the Acoustical Society of America, 25(5), 975–979.

    Google Scholar 

  • Cohen, Y. E. (2009). Multimodal activity in the parietal cortex. Hearing Research, 258(1–2), 100–105.

    PubMed  Google Scholar 

  • Cohen, Y. E., Cohen, I. S., & Gifford, G. W., III. (2004). Modulation of LIP activity by predictive auditory and visual cues. Cerebral Cortex, 14(12), 1287–1301.

    PubMed  Google Scholar 

  • Cohen, Y. E., Russ, B. E., & Gifford, G. W., III. (2005). Auditory processing in the posterior parietal cortex. Behavioral and Cognitive Neuroscience Review, 4(3), 218–231.

    Google Scholar 

  • Colombo, M., & D’Amato, M. R. (1986). A comparison of visual and auditory short-term memory in monkeys (Cebus apella). Quarterly Journal of Experimental Psychology B, 38(4), 425–448.

    CAS  Google Scholar 

  • Colombo, M., D’Amato, M. R., Rodman, H. R., & Gross, C. G. (1990). Auditory association cortex lesions impair auditory short-term memory in monkeys. Science, 247(4940), 336–338.

    CAS  PubMed  Google Scholar 

  • Colombo, M., Rodman, H. R., & Gross, C. G. (1996). The effects of superior temporal cortex lesions on the processing and retention of auditory information in monkeys (Cebus apella). Journal of Neuroscience, 16(14), 4501–4517.

    CAS  PubMed  Google Scholar 

  • Constantinidis, C., & Procyk, E. (2004). The primate working memory networks. Cognitive, Affective, & Behavioral Neuroscience, 4(4), 444–465.

    Google Scholar 

  • Courtney, S. M., Ungerleider, L. G., Keil, K., & Haxby, J. V. (1996). Object and spatial visual working memory activate separate neural systems in human cortex. Cerebral Cortex, 6(1), 39–49.

    CAS  PubMed  Google Scholar 

  • Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222.

    CAS  PubMed  Google Scholar 

  • Diamond, D. M., & Weinberger, N. M. (1986). Classical conditioning rapidly induces specific changes in frequency receptive fields of single neurons in secondary and ventral ectosylvian auditory cortical fields. Brain Research, 372(2), 357–360.

    CAS  PubMed  Google Scholar 

  • Durif, C., Jouffrais, C., & Rouiller, E. M. (2003). Single-unit responses in the auditory cortex of monkeys performing a conditional acousticomotor task. Experimental Brain Research, 153(4), 614–627.

    Google Scholar 

  • Edeline, J. M. (1999). Learning-induced physiological plasticity in the thalamo-cortical sensory systems: A critical evaluation of receptive field plasticity, map changes and their potential mechanisms. Progress in Neurobiology, 57(2), 165–224.

    CAS  PubMed  Google Scholar 

  • Edeline, J. M., & Weinberger, N. M. (1991a). Subcortical adaptive filtering in the auditory system: Associative receptive field plasticity in the dorsal medial geniculate body. Behavioral Neuroscience, 105(1), 154–175.

    CAS  PubMed  Google Scholar 

  • Edeline, J. M., & Weinberger, N. M. (1991b). Thalamic short-term plasticity in the auditory system: Associative retuning of receptive fields in the ventral medial geniculate body. Behavioral Neuroscience, 105(5), 618–639.

    CAS  PubMed  Google Scholar 

  • Edeline, J. M., Pham, P., & Weinberger, N. M. (1993). Rapid development of learning-induced receptive field plasticity in the auditory cortex. Behavioral Neuroscience, 107(4), 539–551.

    CAS  PubMed  Google Scholar 

  • Evans, E. F., & Whitfield, I. C. (1964). Classification of unit responses in the auditory cortex of the unanaesthetized and unrestrained cat. Journal of Physiology, 171(3), 476–493.

    CAS  PubMed  Google Scholar 

  • Fritz, J. B., Shamma, S., Elhilali, M., & Klein, D. (2003). Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex. Nature Neuroscience, 6(11), 1216–1223.

    CAS  PubMed  Google Scholar 

  • Fritz, J. B., Elhilali, M., & Shamma, S. A. (2005a). Differential dynamic plasticity of A1 receptive fields during multiple spectral tasks. Journal of Neuroscience, 25(33), 7623–7635.

    CAS  PubMed  Google Scholar 

  • Fritz, J. B., Mishkin, M., & Saunders, R. C. (2005b). In search of an auditory engram. Proceedings of the National Academy of Sciences of the USA, 102(26), 9359–9364.

    CAS  PubMed  Google Scholar 

  • Fritz, J. B., Shamma, S., & Elhilali, M. (2005c). One click, two clicks: The past shapes the future in auditory cortex. Neuron, 47(3), 325–327.

    CAS  PubMed  Google Scholar 

  • Fritz, J. B., Elhilali, M., David, S. V., & Shamma, S. A. (2007). Does attention play a role in dynamic receptive field adaptation to changing acoustic salience in A1? Hearing Research, 229(1–2), 186–203.

    PubMed  Google Scholar 

  • Fritz, J. B., David, S. V., Radtke-Schuller, S., Yin, P., & Shamma, S. A. (2010). Adaptive, behaviorally gated, persistent encoding of task-relevant auditory information in ferret frontal cortex. Nature Neuroscience, 13(8), 1011–1019.

    CAS  PubMed  Google Scholar 

  • Fuster, J. M. (2008). Overview of prefrontal functions: The temporal organization of behavior. In J. M. Fuster, The prefrontal cortex (pp. 333–385). Amsterdam; Boston: Academic Press/Elsevier.

    Google Scholar 

  • Fuster, J. M., & Alexander, G. E. (1971). Neuron activity related to short-term memory. Science, 173(997), 652–654.

    CAS  PubMed  Google Scholar 

  • Fuster, J. M., & Alexander, G. E. (1973). Firing changes in cells of the nucleus medialis dorsalis associated with delayed response behavior. Brain Research, 61, 79–91.

    CAS  PubMed  Google Scholar 

  • Fuster, J. M., Bauer, R. H., & Jervey, J. P. (1982). Cellular discharge in the dorsolateral prefrontal cortex of the monkey in cognitive tasks. Experimental Neurology, 77(3), 679–694.

    CAS  PubMed  Google Scholar 

  • Fuster, J. M., Bodner, M., & Kroger, J. K. (2000). Cross-modal and cross-temporal association in neurons of frontal cortex. Nature, 405(6784), 347–351.

    CAS  PubMed  Google Scholar 

  • Galván, V. V., & Weinberger, N. M. (2002). Long-term consolidation and retention of learning-induced tuning plasticity in the auditory cortex of the guinea pig. Neurobiology of Learning and Memory, 77(1), 78–108.

    PubMed  Google Scholar 

  • Gibson, J. R., & Maunsell, J. H. (1997). Sensory modality specificity of neural activity related to memory in visual cortex. Journal of Neurophysiology, 78(3), 1263–1275.

    CAS  PubMed  Google Scholar 

  • Gifford, G. W., III, & Cohen, Y. E. (2004). Effect of a central fixation light on auditory spatial responses in area LIP. Journal of Neurophysiology, 91(6), 2929–2933.

    PubMed  Google Scholar 

  • Goldman-Rakic, P. S. (1995). Cellular basis of working memory. Neuron, 14(3), 477–485.

    CAS  PubMed  Google Scholar 

  • Gonzalez-Lima, F., & Scheich, H. (1986). Neural substrates for tone-conditioned bradycardia demonstrated with 2-deoxyglucose. II. Auditory cortex plasticity. Behavioural Brain Research, 20(3), 281–293.

    CAS  PubMed  Google Scholar 

  • Gottlieb, Y., Vaadia, E., & Abeles, M. (1989). Single unit activity in the auditory cortex of a monkey performing a short term memory task. Experimental Brain Research, 74(1), 139–148.

    CAS  Google Scholar 

  • Grant, S. J., Aston-Jones, G., & Redmond, D. E., Jr. (1988). Responses of primate locus coeruleus neurons to simple and complex sensory stimuli. Brain Research Bulletin, 21(3), 401–410.

    CAS  PubMed  Google Scholar 

  • Guinan, J. J., Jr. (2010). Cochlear efferent innervation and function. Current Opinion in Otolaryngology & Head and Neck Surgery, 18(5), 447–453.

    Google Scholar 

  • Hackett, T. A. (2008). Anatomical organization of the auditory cortex. Journal of the American Academy of Audiology, 19(10), 774–779.

    PubMed  Google Scholar 

  • Harley, C. W. (2004). Norepinephrine and dopamine as learning signals. Neural Plasticity, 11(3–4), 191–204.

    CAS  PubMed  Google Scholar 

  • Hocherman, S., & Gilat, E. (1981). Dependence of auditory cortex evoked unit activity on interstimulus interval in the cat. Journal of Neurophysiology, 45(6), 987–997.

    CAS  PubMed  Google Scholar 

  • Hocherman, S., Benson, D. A., Goldstein, M. H., Jr., Heffner, H. E., & Hienz, R. D. (1976). Evoked unit activity in auditory cortex of monkeys performing a selective attention task. Brain Research, 117(1), 51–68.

    CAS  PubMed  Google Scholar 

  • Hromádka, T., & Zador, A. M. (2007). Toward the mechanisms of auditory attention. Hearing Research, 229(1–2), 180–185.

    PubMed  Google Scholar 

  • Hubel, D. H. (1959). Single unit activity in striate cortex of unrestrained cats. Journal of Physiology, 147, 226–238.

    CAS  PubMed  Google Scholar 

  • Jääskeläinen, I. P., Ahveninen, J., Bonmassar, G., Dale, A. M., Ilmoniemi, R. J., Levänen, S., & Belliveau, J. W. (2004). Human posterior auditory cortex gates novel sounds to consciousness. Proceedings of the National Academy of Sciences of the USA, 101(17), 6809–6814.

    PubMed  Google Scholar 

  • Jääskeläinen, I. P., Ahveninen, J., Belliveau, J. W., Raij, T., & Sams, M. (2007). Short-term plasticity in auditory cognition. Trends in Neurosciences, 30(12), 653–961.

    PubMed  Google Scholar 

  • James, W. (1890). Principles of psychology. New York: Henry Holt and Co.

    Google Scholar 

  • Joseph, J. P., & Barone, P. (1987). Prefrontal unit activity during a delayed oculomotor task in the monkey. Experimental Brain Research, 67(3), 460–468.

    CAS  Google Scholar 

  • Kaas, J. H., & Hackett, T. A. (1999). ‘What’ and ‘where’ processing in auditory cortex. Nature Neuroscience, 2(12), 1045–1047.

    CAS  PubMed  Google Scholar 

  • Kawagoe, R., Takikawa, Y., & Hikosaka, O. (1998). Expectation of reward modulates cognitive signals in the basal ganglia. Nature Neuroscience, 1(5), 411–416.

    CAS  PubMed  Google Scholar 

  • Kikuchi-Yorioka, Y., & Sawaguchi, T. (2000). Parallel visuospatial and audiospatial working memory processes in the monkey dorsolateral prefrontal cortex. Nature Neuroscience, 3(11), 1075–1076.

    CAS  PubMed  Google Scholar 

  • King, C., McGee, T., Rubel, E. W., Nicol, T., & Kraus, N. (1995). Acoustic features and acoustic changes are represented by different central pathways. Hearing Research, 85(1–2), 45–52.

    CAS  PubMed  Google Scholar 

  • Kitzes, L. M., & Doherty, D. (1994). Influence of callosal activity on units in the auditory cortex of ferret (Mustela putorius). Journal of Neurophysiology, 71(5), 1740–1751.

    CAS  PubMed  Google Scholar 

  • Knudsen, E. I. (2007). Fundamental components of attention. Annual Review of Neuroscience, 30, 57–78.

    CAS  PubMed  Google Scholar 

  • Kojima, S. (1985). Auditory short-term memory in the Japanese monkey. International Journal of Neuroscience, 25(3–4), 255–262.

    CAS  PubMed  Google Scholar 

  • Komura, Y., Tamura, R., Uwano, T., Nishijo, H., & Ono, T. (2005). Auditory thalamus integrates visual inputs into behavioral gains. Nature Neuroscience, 8(9), 1203–1209.

    CAS  PubMed  Google Scholar 

  • Kondo, H., Saleem, K. S., & Price, J. L. (2003). Differential connections of the temporal pole with the orbital and medial prefrontal networks in macaque monkeys. The Journal of Comparative Neurology, 465(4), 499–523.

    PubMed  Google Scholar 

  • Kraus, N., McGee, T., Littman, T., Nicol, T., & King, C. (1994). Nonprimary auditory thalamic representation of acoustic change. Journal of Neurophysiology, 72(3), 1270–1277.

    CAS  PubMed  Google Scholar 

  • Lakatos, P., O’Connell, M. N., Barczak, A., Mills, A., Javitt, D. C., & Schroeder, C. E. (2009). The leading sense: Supramodal control of neurophysiological context by attention. Neuron, 64(3), 419–430.

    CAS  PubMed  Google Scholar 

  • Lee, J. H., Russ, B. E., Orr, L. E., & Cohen, Y. E. (2009). Prefrontal activity predicts monkeys’ decisions during an auditory category task. Frontiers in Integrative Neuroscience, 3(16), 1–12.

    Google Scholar 

  • Lemus, L., Hernández, A., & Romo, R. (2009a). Neural codes for perceptual discrimination of acoustic flutter in the primate auditory cortex. Proceedings of the National Academy of Sciences of the USA, 106(23), 9471–9476.

    CAS  PubMed  Google Scholar 

  • Lemus, L., Hernández, A., & Romo, R. (2009b). Neural encoding of auditory discrimination in ventral premotor cortex. Proceedings of the National Academy of Sciences of the USA, 106(34), 14640–14645.

    CAS  PubMed  Google Scholar 

  • Lomber, S. G., Payne, B. R., & Cornwell, P. (2001). Role of the superior colliculus in analyses of space: Superficial and intermediate layer contributions to visual orienting, auditory orienting, and visuospatial discriminations during unilateral and bilateral deactivations. Journal of Comparative Neurology, 441(1), 44–57.

    CAS  PubMed  Google Scholar 

  • Lu, Z. L., Williamson, S. J., & Kaufman, L. (1992). Behavioral lifetime of human auditory sensory memory predicted by physiological measures. Science, 258(5088), 1668–1670.

    CAS  PubMed  Google Scholar 

  • Lucchetti, C., Lanzilotto, M., & Bon, L. (2008). Auditory-motor and cognitive aspects in area 8B of macaque monkey’s frontal cortex: A premotor ear-eye field (PEEF). Experimental Brain Research, 186(1), 131–141.

    CAS  Google Scholar 

  • Markowitsch, H. J., Emmans, D., Irle, E., Streicher, M., & Preilowski, B. (1985). Cortical and subcortical afferent connections of the primate’s temporal pole: A study of rhesus monkeys, squirrel monkeys, and marmosets. Journal of Comparative Neurology, 242(3), 425–458.

    CAS  PubMed  Google Scholar 

  • Mazzoni, P., Bracewell, R. M., Barash, S., & Andersen, R. A. (1996). Spatially tuned auditory responses in area LIP of macaques performing delayed memory saccades to acoustic targets. Journal of Neurophysiology, 75(3), 1233–1241.

    CAS  PubMed  Google Scholar 

  • Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Reviews of Neuroscience, 24, 167–202.

    CAS  Google Scholar 

  • Miller, E. K., & Desimone, R. (1994). Parallel neuronal mechanisms for short-term memory. Science, 263(5146), 520–522.

    CAS  PubMed  Google Scholar 

  • Miller, E. K., Erickson, C. A., & Desimone, R. (1996). Neural mechanisms of visual working memory in prefrontal cortex of the macaque. Journal of Neuroscience, 16(16), 5154–5167.

    CAS  PubMed  Google Scholar 

  • Miller, J. M., Sutton, D., Pfingst, B., Ryan, A., Beaton, R., & Gourevitch, G. (1972). Single cell activity in the auditory cortex of Rhesus monkeys: Behavioral dependency. Science, 177(47), 449–451.

    CAS  PubMed  Google Scholar 

  • Miller, J. M., Dobie, R. A., Pfingst, B. E., & Hienz, R. D. (1980). Electrophysiologic studies of the auditory cortex in the awake monkey. American Journal of Otolaryngology, 1(2), 119–130.

    CAS  PubMed  Google Scholar 

  • Mishkin, M. (1978). Memory in monkeys severely impaired by combined but not by separate removal of amygdala and hippocampus. Nature, 273(5660), 297–298.

    CAS  PubMed  Google Scholar 

  • Mishkin, M., & Delacour, J. (1975). An analysis of short-term visual memory in the monkey. Journal of Experimental Psychology: Animal Behavior Processes, 1(4), 326–334.

    CAS  PubMed  Google Scholar 

  • Morris, J. S., Friston, K. J., & Dolan, R. J. (1998). Experience-dependent modulation of tonotopic neural responses in human auditory cortex. Proceedings of the Royal Society B: Biological Sciences, 265(1397), 649–657.

    CAS  PubMed  Google Scholar 

  • Murray, E. A., & Mishkin, M. (1998). Object recognition and location memory in monkeys with excitotoxic lesions of the amygdala and hippocampus. Journal of Neuroscience, 18(16), 6568–6582.

    CAS  PubMed  Google Scholar 

  • Neff, W., Diamond, I., & Cassedey, J. (1975). Behavioural studies of auditory discrimination: Central nervous system. In W. D. Keider & D. Neff (Eds.), Handbook of sensory physiology, Vol. V/2 (pp. 307–400). New York: Springer-Verlag.

    Google Scholar 

  • Ng, C. W. (2011). Behavioral and neural correlates of auditory encoding and memory functions in rhesus macaques. Doctoral dissertation. Retrieved from ProQuest Dissertations and Theses. (879629871).

    Google Scholar 

  • Niwa, M., Johnson, J. S., Marshall, E. A., O’Connor, K. N., & Sutter, M. L. (2009). Decision- and state-related activity in primary auditory cortex (A1) of rhesus macaques performing amplitude modulation (AM) discrimination [Abstract]. Society for Neuroscience Abstracts, 556, 2.

    Google Scholar 

  • Orr, L. E., Russ, B. E., & Cohen, Y. E. (2008). Disruption of decision making capacities in the rhesus macaque by prefrontal cortex TMS [Abstract]. Society for Neuroscience Abstracts, 875, 24.

    Google Scholar 

  • Overman, W. H., Jr., & Doty, R. W. (1980). Prolonged visual memory in macaques and man. Neuroscience, 5(11), 1825–1831.

    PubMed  Google Scholar 

  • Otazu, G. H., Tai, L. H., Yang, Y., & Zador, A. M. (2009). Engaging in an auditory task suppresses responses in auditory cortex. Nature Neuroscience, 12(5), 646–654.

    CAS  PubMed  Google Scholar 

  • Pasternak, T., & Greenlee, M. W. (2005). Working memory in primate sensory systems. Nature Reviews Neuroscience, 6(2), 97–107.

    CAS  PubMed  Google Scholar 

  • Pérez-González, D., Malmierca, M. S., & Covey, E. (2005). Novelty detector neurons in the mammalian auditory midbrain. European Journal of Neuroscience, 22(11), 2879–2885.

    PubMed  Google Scholar 

  • Plakke, B. (2010). Auditory working memory: Contributions of lateral prefrontal cortex and acetylcholine in non-human primates. Doctoral dissertation. Retrieved from ProQuest Dissertations and Theses (880271144).

    Google Scholar 

  • Plakke, B., Ng, C. W., & Poremba, A. (2008). Scopolamine impairs auditory delayed matching-to-sample performance in monkeys. Neuroscience Letters, 438(1), 126–130.

    CAS  PubMed  Google Scholar 

  • Pollack, G. S. (1988). Selective attention in an insect auditory neuron. Journal of Neuroscience, 8(7), 2635–2639.

    CAS  PubMed  Google Scholar 

  • Polley, D. B., Steinberg, E. E., & Merzenich, M. M. (2006). Perceptual learning directs auditory cortical map reorganization through top-down influences. Journal of Neuroscience, 26(18), 4970–4982.

    CAS  PubMed  Google Scholar 

  • Poremba, A., & Mishkin, M. (2007). Exploring the extent and function of higher-order auditory cortex in rhesus monkeys. Hearing Research, 229(1–2), 14–23.

    PubMed  Google Scholar 

  • Poremba, A., Saunders, R. C., Crane, A. M., Cook, M., Sokoloff, L., & Mishkin, M. (2003). Functional mapping of the primate auditory system. Science, 299(5606), 568–572.

    CAS  PubMed  Google Scholar 

  • Poremba, A., Malloy, M., Saunders, R. C., Carson, R. E., Herscovitch, P., & Mishkin, M. (2004). Species specific calls evoke asymmetric activity in the monkey’s temporal poles. Nature, 427(6973), 448–451.

    CAS  PubMed  Google Scholar 

  • Rainer, G., Rao, S. C., & Miller, E. K. (1999). Prospective coding for objects in primate prefrontal cortex. Journal of Neuroscience, 19(13), 5493–5505.

    CAS  PubMed  Google Scholar 

  • Rämä, P. (2008). Domain-dependent activation during spatial and nonspatial auditory working memory. Cognitive Processing, 9(1), 29–34.

    PubMed  Google Scholar 

  • Rämä, P., Poremba, A., Sala, J. B., Yee, L., Malloy, M., Mishkin, M., & Courtney, S. M. (2004). Dissociable functional cortical topographies for working memory maintenance of voice identity and location. Cerebral Cortex, 14(7), 768–780.

    PubMed  Google Scholar 

  • Rauschecker, J. P., & Tian, B. (2000). Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proceedings of the National Academy of Sciences of the USA, 97(22), 11800–11806.

    CAS  PubMed  Google Scholar 

  • Recanzone, G. H., Schreiner, C. E., & Merzenich, M. M. (1993). Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. Journal of Neuroscience, 13(1), 87–103.

    CAS  PubMed  Google Scholar 

  • Romanski, L. M., & Averbeck, B. B. (2009). The primate cortical auditory system and neural representation of conspecific vocalizations. Annual Reviews of Neuroscience, 32, 315–346.

    CAS  Google Scholar 

  • Romanski, L. M., & Goldman-Rakic, P. S. (2002). An auditory domain in primate prefrontal cortex. Nature Neuroscience 5(1), 15–16.

    CAS  PubMed  Google Scholar 

  • Romanski, L. M., Tian, B., Fritz, J., Mishkin, M., Goldman-Rakic, P. S., & Rauschecker, J. P. (1999). Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nature Neuroscience, 2(12), 1131–1136.

    CAS  PubMed  Google Scholar 

  • Russ, B. E., Orr, L. E., & Cohen, Y. E. (2008). Prefrontal neurons predict choices during an auditory same-different task. Current Biology, 18(19), 1483–1488.

    CAS  PubMed  Google Scholar 

  • Sakurai, Y. (1990). Cells in the rat auditory system have sensory-delay correlates during the performance of an auditory working memory task. Behavioral Neuroscience, 104(6), 856–868.

    CAS  PubMed  Google Scholar 

  • Sakurai, Y. (1994). Involvement of auditory cortical and hippocampal neurons in auditory working memory and reference memory in the rat. Journal of Neuroscience, 14(5 Pt 1), 2606–2623.

    CAS  PubMed  Google Scholar 

  • Scheich, H. (2011). Behavioral semantics of learning and crossmodal processing in auditory cortex: The semantic processor concepts. Hearing Research, 271(1–2), 3–15.

    PubMed  Google Scholar 

  • Shafi, M., Zhou, Y., Quintana, J., Chow, C., Fuster, J., & Bodner, M. (2007). Variability in neuronal activity in primate cortex during working memory tasks. Neuroscience, 146(3), 1082–1108.

    CAS  PubMed  Google Scholar 

  • Shamma, S. A., Elhilali, M., & Micheyl, C. (2010). Temporal coherence and attention in auditory scene analysis. Trends in Neurosciences, 34(3), 114–123.

    PubMed  Google Scholar 

  • Shea, S. D., & Margoliash, D. (2010). Behavioral state-dependent reconfiguration of song-related network activity and cholinergic systems. Journal of Chemical Neuroanatomy, 39(2), 132–140.

    CAS  PubMed  Google Scholar 

  • Suga, N., & Ma, X. (2003). Multiparametric corticofugal modulation and plasticity in the auditory system. Nature Reviews Neuroscience, 4(10), 783–794.

    CAS  PubMed  Google Scholar 

  • Sutter, M. L., & Shamma, S. A. (2010). The relationship of auditory cortical activity to perception and behavior. In J. A. Winer & C. E. Schreiner (Eds.), The auditory cortex (pp. 617–641). New York: Springer.

    Google Scholar 

  • Ulanovsky, N., Las, L., & Nelken, I. (2003). Processing of low-probability sounds by cortical neurons. Nature Neuroscience, 6(4), 391–398.

    CAS  PubMed  Google Scholar 

  • Ungerleider, L. G., & Haxby, J. V. (1994). ‘What’ and ‘where’ in the human brain. Current Opinion in Neurobiology, 4(2), 157–165.

    CAS  PubMed  Google Scholar 

  • Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A. Goodale, & R. J. W. Masfield (Eds.), Analysis of visual behavior (pp. 49–586). Cambridge, MA: MIT Press.

    Google Scholar 

  • Wang, H., Wang, X., Wetzel, W., & Scheich, H. (2006). Rapid-rate transcranial magnetic stimulation of animal auditory cortex impairs short-term but not long-term memory formation. European Journal of Neuroscience, 23(8), 2176–2184.

    PubMed  Google Scholar 

  • Watanabe, M. (1992). Frontal units of the monkey coding the associative significance of visual and auditory stimuli. Experimental Brain Research, 89(2), 233–247.

    CAS  Google Scholar 

  • Weinberger, N. M. (2004a). Experience-dependent response plasticity in the auditory cortex: Issues, characteristics, mechanisms and functions. In T. N. Parks, E. W. Rubel, & R. R. Fay (Eds.), Plasticity of the auditory system (pp. 173–227). New York: Springer.

    Google Scholar 

  • Weinberger, N. M. (2004b). Specific long-term memory traces in primary auditory cortex. Nature Reviews Neuroscience, 5(4), 279–290.

    CAS  PubMed  Google Scholar 

  • Weinberger, N. M., Javid, R., & Lepan, B. (1993). Long-term retention of learning-induced receptive-field plasticity in the auditory cortex. Proceedings of the National Academy of Sciences of the USA, 90(6), 2394–2398.

    CAS  PubMed  Google Scholar 

  • Werner-Reiss, U., Porter, K. K., Underhill, A. M., & Groh, J. M. (2006). Long lasting attenuation by prior sounds in auditory cortex of awake primates. Experimental Brain Research, 168(1–2), 272–276.

    Google Scholar 

  • Winer, J. A., & Lee, C. C. (2007). The distributed auditory cortex. Hearing Research, 229(1–2), 3–13.

    PubMed  Google Scholar 

  • Winkowski, D. E., & Knudsen, E. I. (2006). Top-down gain control of the auditory space map by gaze control circuitry in the barn owl. Nature, 439(7074), 336–339.

    CAS  PubMed  Google Scholar 

  • Wollberg, Z., & Sela, J. (1980). Frontal cortex of the awake squirrel monkey: Responses of single cells to visual and auditory stimuli. Brain Research, 198(1), 216–220.

    CAS  PubMed  Google Scholar 

  • Woloszyn, L., & Sheinberg, D. L. (2009). Neural dynamics in inferior temporal cortex during a visual working memory task. Journal of Neuroscience, 29(17), 5494–5507.

    CAS  PubMed  Google Scholar 

  • Yin, P., Mishkin, M., Sutter, M., & Fritz, J. B. (2008). Early stages of melody processing: Stimulus-sequence and task-dependent neuronal activity in monkey auditory cortical fields A1 and R. Journal of Neurophysiology, 100(6), 3009–3029.

    PubMed  Google Scholar 

  • Yu, X. J., Xu, X. X., He, S., & He, J. (2009). Change detection by thalamic reticular neurons. Nature Neuroscience, 12(9), 1165–1170.

    CAS  PubMed  Google Scholar 

  • Zikopoulos, B., & Barbas, H. (2006). Prefrontal projections to the thalamic reticular nucleus form a unique circuit for attentional mechanisms. Journal of Neuroscience, 26(28), 7348–7361.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Amy Opheim, Chi-wing Ng, and Ryan Opheim for assisting with the manuscript preparation. A. Poremba is supported by NIH, NIDCD, DC0007156.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy Poremba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Poremba, A., Bigelow, J. (2013). Neurophysiology of Attention and Memory Processing. In: Cohen, Y., Popper, A., Fay, R. (eds) Neural Correlates of Auditory Cognition. Springer Handbook of Auditory Research, vol 45. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2350-8_8

Download citation

Publish with us

Policies and ethics