Skip to main content

Task-Related Activation of Auditory Cortex

  • Chapter
  • First Online:
Neural Correlates of Auditory Cognition

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 45))

Abstract

Theoretical concepts of audition in conjunction with modified auditory and heterogeneous nonauditory activities found in auditory cortex during task performance point to its role as a semantic processor. Notably, these activities during each task trial reflect not only identification of auditory target features but also in many details the associations formed with other information for behavioral execution of the task. In this way the behavioral meaning of the sounds seems to be determined locally, namely what to do with a sound in a task-specific fashion. Even though many details of activation changes and activation states during a task trial need clarification, the available evidence suggests that it might be possible to recognize from these activities which basic types of logical operations were involved, for example, detection, discrimination, or categorization of sounds. Also motivational aspects related to approach or avoidance, prediction of events, and reinforcements as well as prediction errors seem to be discriminable from the activities. It is obvious that these facets of a task cannot be deduced by auditory cortex alone but only in cooperation with numerous other cortical and subcortical brain areas. Recent evidence suggests that the necessary anatomical connections are available even for primary auditory cortex but become functional only during engagement in auditory tasks. This new view on auditory cortex implies that hierarchical concepts of brain organization reserving cognitive functions to “higher order” cortices must be modified. The information flow from sensory cortex to such cortical areas is undebatable but they seem to feed information back to sensory cortex for local cognitive processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BF:

best frequency

CR:

conditioned response

CS:

conditioned stimulus

STRF:

spectrotemporal receptive field

UR:

unconditioned response

US:

unconditioned stimulus

References

  • Abolafia, J. M., Martinez-Garcia, M., Deco, G., & Sanchez-Vives, M. V. (2011). Slow modulation of ongoing discharge in the auditory cortex during an interval-discrimination task. Frontiers in Integrative Neuroscience, 5(5), doi: 10.3389/fnint.2011.00060.

    Google Scholar 

  • Aliu, S. O., Houde, J. F., & Nagarajan, S. S. (2009). Motor-induced suppression of the auditory cortex. Journal of Cognitive Neuroscience, 21, 791–802.

    PubMed  Google Scholar 

  • Armony, J. L., Quirk, G. J., & LeDoux, J. E. (1998). Differential effects of amygdala lesions of early and late plastic components of auditory cortex spike trains during fear conditioning. Journal of Neuroscience, 18, 2592–2601.

    PubMed  CAS  Google Scholar 

  • Atiani, S., Elhilali, M., David, S. V., Fritz, J. B., & Shamma, S. A. (2009). Task difficulty and performance induce diverse adaptive patterns in gain and shape of primary auditory cortical receptive fields. Neuron, 61, 467–480.

    PubMed  CAS  Google Scholar 

  • Bakin, J. S., & Weinberger, N. M. (1996). Induction of a physiological memory in the cerebral cortex by stimulation of the nucleus basalis. Proceedings of the National Academy of Sciences of the USA, 93, 11219–11224.

    PubMed  CAS  Google Scholar 

  • Bao, S., Chan, V. T., & Merzenich, M. M. (2001). Cortical remodelling induced by activity of ventral tegmental dopamine neurons. Nature, 412, 79–83.

    PubMed  CAS  Google Scholar 

  • Beaton, R., & Miller, J. M. (1975). Single cell activity in the auditory cortex of the unanesthetized, behaving monkey: Correlation with stimulus controlled behavior. Brain Research, 100, 543–562.

    PubMed  CAS  Google Scholar 

  • Behrens, T. E., Woolrich, M. W., Walton, M. E., & Rushworth, M. F. (2007). Learning the value of information in an uncertain world. Nature Neuroscience, 10, 1214–1221

    PubMed  CAS  Google Scholar 

  • Benson, D. A., & Hienz, R. D. (1978). Single-unit activity in the auditory cortex of monkeys selectively attending left vs. right ear stimuli. Brain Research, 159, 307–320.

    PubMed  CAS  Google Scholar 

  • Benson, D. A., Hienz, R. D., & Goldstein, M. H., Jr. (1981). Single-unit activity in the auditory cortex of monkeys actively localizing sound sources: Spatial tuning and behavioral dependency. Brain Research, 219, 249–267.

    PubMed  CAS  Google Scholar 

  • Birbaumer, N., Elbert, T., Canavan, A. G., & Rockstroh, B. (1990). Slow potentials of the cerebral cortex and behavior. Physiological Reviews, 70, 1–41.

    PubMed  CAS  Google Scholar 

  • Brechmann, A., & Scheich, H. (2005). Hemispheric shifts of sound representation in auditory cortex with conceptual listening. Cerebral Cortex, 15, 578–587.

    PubMed  Google Scholar 

  • Brechmann, A., Gaschler-Markefski, B., Sohr, M., Yoneda, K., Kaulisch, T., & Scheich, H. (2007). Working memory specific activity in auditory cortex: Potential correlates of sequential processing and maintenance. Cerebral Cortex, 17, 2544–2552.

    PubMed  Google Scholar 

  • Brosch, M., & Scheich, H. (2005). Non-acoustic influence on neural activity in auditory cortex. In König, R., Heil, P., Budinger, E., & Scheich, H. (Eds.), Auditory cortex: Towards a synthesis of human and animal research (pp. 127–143), Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Brosch, M., Selezneva, E., & Scheich, H. (2005). Nonauditory events of a behavioral procedure activate auditory cortex of highly trained monkeys. Journal of Neuroscience, 25, 6797–6806.

    PubMed  CAS  Google Scholar 

  • Brosch, M., Selezneva, E., & Scheich, H. (2011a). Formation of associations in auditory cortex by slow changes of tonic firing. Hearing Research, 271, 66–73.

    PubMed  Google Scholar 

  • Brosch, M., Selezneva, E., & Scheich, H. (2011b). Representation of reward feedback in primate auditory cortex. Frontiers in Systems Neuroscience, 5(5), doi: 10.3389/fnsys.2011.00005.

    Google Scholar 

  • Brosch, M., Babanin, M., Selezneva, E., Huang, Y., & Scheich H. (2011c). Task demands and motivation affect neuronal activity in the auditory cortex of nonhuman primates. Society for Neuroscience Abstracts, 556, 2.

    Google Scholar 

  • Brown, M., Irvine, D. R., & Park, V. N. (2004). Perceptual learning on an auditory frequency discrimination task by cats: Association with changes in primary auditory cortex. Cerebral Cortex, 14, 952–965.

    PubMed  Google Scholar 

  • Budinger, E., & Scheich, H. (2009). Anatomical connections suitable for the direct processing of neuronal information of different modalities via the rodent primary auditory cortex. Hearing Research, 258, 16–27.

    PubMed  Google Scholar 

  • Cohen, M. R., & Nagel, E. (1993). An introduction to logic. Indianapolis, IN: Hackett.

    Google Scholar 

  • Colomb, J., & Brembs, B. (2010). The biology of psychology ‘simple’ conditioning? Communicative and Integrative Biology, 3, 142–145.

    PubMed  Google Scholar 

  • Curio, G., Neuloh, G., Numminen, J., Jousmaki, V., & Hari, R. (2000). Speaking modifies voice-evoked activity in the human auditory cortex. Human Brain Mapping, 9, 183–191.

    PubMed  CAS  Google Scholar 

  • David, S. V., Fritz, J. B., & Shamma, S. A. (2012). Task reward structure shapes rapid receptive field plasticity in auditory cortex. Proceedings of the National Academy of Sciences of the USA, 109(6), 2144-2149, doi: 10.1073/pnas.1117717109.

    PubMed  CAS  Google Scholar 

  • Eggermont, J. J. (1998). Representation of spectral and temporal sound features in three cortical fields of the cat: Similarities outweigh differences, Journal of Neurophysiology, 80, 2743–2764.

    PubMed  CAS  Google Scholar 

  • Eliades, S. J., & Wang, X. (2003). Sensory-motor interaction in the primate auditory cortex during self-initiated vocalizations. Journal of Neurophysiology, 89, 2194–2207.

    PubMed  Google Scholar 

  • Eliades, S. J., & Wang, X. (2005). Dynamics of auditory-vocal interaction in monkey auditory cortex. Cerebral Cortex, 15, 1510–1523.

    PubMed  Google Scholar 

  • Eliades, S. J., & Wang, X. (2008). Neural substrates of vocalization feedback monitoring in primate auditory cortex. Nature, 453, 1102–1106.

    PubMed  CAS  Google Scholar 

  • Fritz, J., Shamma, S., Elhilali, M., & Klein, D. (2003). Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex. Nature Neuroscience, 6, 1216–1223.

    PubMed  CAS  Google Scholar 

  • Fritz, J. B., Elhilali, M., & Shamma, S. A. (2005). Differential dynamic plasticity of A1 receptive fields during multiple spectral tasks. Journal of Neuroscience, 25, 7623–7635.

    PubMed  CAS  Google Scholar 

  • Fu, K. M., Johnston, T. A., Shah, A. S., Arnold, L., Smiley, J., Hackett, T.A., et al. (2003). Auditory cortical neurons respond to somatosensory stimulation. Journal of Neuroscience, 23, 7510–7515.

    PubMed  CAS  Google Scholar 

  • Fu, K. M., Shah, A. S., O’Connell, M. N., McGinnis, T., Eckholdt, H., Lakatos, P., et al. (2004). Timing and laminar profile of eye-position effects on auditory responses in primate auditory cortex. Journal of Neurophysiology, 92, 3522–3531.

    PubMed  Google Scholar 

  • Fuster, J. M. (2005). Cortex and mind: Unifying cognition. New York: Oxford University Press..

    Google Scholar 

  • Ghazanfar, A. A., & Schröder, C. E. (2006). Is neocortex essentially multisensory? Trends in Cognitive Science, 10, 278–285.

    Google Scholar 

  • Gilat, E., & Perlman, I. (1984). Single unit activity in the auditory cortex and the medial geniculate body of the rhesus monkey: Behavioral modulation. Brain Research, 324, 323–333.

    PubMed  CAS  Google Scholar 

  • Gottlieb, Y., Vaadia, E., & Abeles, M. (1989). Single unit activity in the auditory cortex of a monkey performing a short term memory task. Experimental Brain Research, 74, 139–148.

    CAS  Google Scholar 

  • Griffiths, T. D., & Warren, J. D. (2002). The planum temporale as a computational hub. Trends in Neuroscience, 25, 348–353.

    CAS  Google Scholar 

  • Guitart-Masip, M., Fuentemilla, L., Bach, D. R., Huys, Q. J., Dayan, P., Dolan, R. J., & Duzel, E. (2011). Action dominates valence in anticipatory representations in the human striatum and dopaminergic midbrain. Journal of Neuroscience, 31, 7867–7875.

    PubMed  CAS  Google Scholar 

  • Harper, N. S., & McAlpine, D. (2004). Optimal neural population coding of an auditory spatial cue. Nature, 430, 682–686.

    PubMed  CAS  Google Scholar 

  • Hocherman, S., & Yirmiya, R. (1990). Neuronal activity in the medial geniculate nucleus and in the auditory cortex of the rhesus monkey reflects signal anticipation. Brain, 113, 1707–1720.

    PubMed  Google Scholar 

  • Hocherman, S., Benson, D. A., Goldstein, M. H., Jr., Heffner, H. E., & Hienz, R. D. (1976). Evoked unit activity in auditory cortex of monkeys performing a selective attention task. Brain Research, 117, 51–68.

    PubMed  CAS  Google Scholar 

  • Houde, J. F., Nagarajan, S. S., Sekihara, K., & Merzenich, M. M. (2002). Modulation of the auditory cortex during speech: An MEG study. Journal of Cognitive Neuroscience, 14, 1125–1138.

    PubMed  Google Scholar 

  • Jaramillo, S., & Zador, A. M. (2011). The auditory cortex mediates the perceptual effects of acoustic temporal expectation. Nature Neuroscience, 14, 246–251.

    PubMed  CAS  Google Scholar 

  • Kaas, J. H., & Hackett, T. A. (2000). Subdivisions of auditory cortex and processing streams in primates. Proceedings of the National Academy of Sciences of the USA, 97, 11793–11799.

    PubMed  CAS  Google Scholar 

  • Kilgard, M. P., & Merzenich, M. M. (1998). Cortical map reorganization enabled by nucleus basalis activity. Science, 279, 1714–1718.

    PubMed  CAS  Google Scholar 

  • Kitzes, L. M., Farley, G. R., & Starr, A. (1978). Modulation of auditory cortex unit activity during the performance of a conditioned response. Experimental Neurology, 62, 678–697.

    PubMed  CAS  Google Scholar 

  • Komura, Y., Tamura, R., Uwano, T., Nishijo, H., Kaga, K., & Ono, T. (2001). Retrospective and prospective coding for predicted reward in the sensory thalamus. Nature, 412, 546–549.

    PubMed  CAS  Google Scholar 

  • Komura, Y., Tamura, R., Uwano, T., Nishijo, H., Kaga, K., & Ono, T. (2005). Auditory thalamus integrates visual inputs into behavioral gains. Nature Neuroscience, 8, 1203–1209.

    PubMed  CAS  Google Scholar 

  • König, R., Heil, P., Budinger, E., & Scheich, H. (2005). Auditory cortex: Towards a synthesis of human and animal research, Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Konorski, J. (1967) Integrative activity of the brain. Chicago: University of Chicago Press

    Google Scholar 

  • Lee, C. C., & Middlebrooks, J. C. (2011). Auditory cortex spatial sensitivity sharpens during task performance. Nature Neuroscience, 14, 108–114.

    PubMed  CAS  Google Scholar 

  • Lemus, L., Hernández, A., & Romo, R. (2009a). Neural codes for perceptual discrimination of acoustic flutter in the primate auditory cortex. Proceedings of the National Academy of Sciences of the USA, 106, 9471–9476.

    PubMed  CAS  Google Scholar 

  • Lemus, L., Hernández, A., & Romo, R. (2009b). Neural encoding of auditory discrimination in ventral premotor cortex. Proceedings of the National Academy of Sciences of the USA, 106, 14640–14645.

    PubMed  CAS  Google Scholar 

  • Letzkus, J. J., Wolff, S. B., Meyer, E. M., Tovote, P., Courtin, J., Herry, C., & Lüthi, A. (2012). A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature, 480, 331–335.

    Google Scholar 

  • Liddell, H. S. (1942). The conditioned reflex. In F. A. Moss (Ed.), Comparative psychology. Upper Saddle River, NJ: Prentice-Hall.

    Google Scholar 

  • Liu, H., Behroozmand, R., & Larson, C. R. (2010). Enhanced neural responses to self-triggered voice pitch feedback perturbations. NeuroReport, 21, 527–531.

    PubMed  Google Scholar 

  • Martikainen, M. H., Kaneko, K., & Hari, R. (2005). Suppressed responses to self-triggered sounds in the human auditory cortex. Cerebral Cortex, 15, 299–302.

    PubMed  Google Scholar 

  • Metzger, R. R., Greene, N. T., Porter, K. K., & Groh, J. M. (2006). Effects of reward and behavioural context on neural activity in the primate inferior colliculus. Journal of Neuroscience, 26, 7468–7476.

    PubMed  CAS  Google Scholar 

  • Miller, J. M., Sutton, D., Pfingst, B., Ryan, A., Beaton, R., & Gourevitch, G. (1972). Single cell activity in the auditory cortex of Rhesus monkeys: Behavioral dependency. Science, 177, 449–451.

    PubMed  CAS  Google Scholar 

  • Miller, J. M., Dobie, R. A., Pfingst, B. E., & Hienz, R. D. (1980). Electrophysiologic studies of the auditory cortex in the awake monkey. American Journal of Otolaryngology, 1, 119–130.

    PubMed  CAS  Google Scholar 

  • Müller-Preuss, P., & Ploog, D. (1981). Inhibition of auditory cortical neurons during phonation. Brain Research, 215, 61–76.

    PubMed  Google Scholar 

  • Näätänen, R., Kujala, T., & Winkler, I. (2011). Auditory processing that leads to conscious perception: A unique window to central auditory processing opened by the mismatch negativity and related responses. Psychophysiology, 48, 4–22.

    PubMed  Google Scholar 

  • Nelken, I., & Mike, B., & Calford, M. B. (2010). Processing strategies in auditory cortex: Comparison with other sensory modalities. In J. Winer & C. E. Schreiner (Eds.), The auditory cortex (pp. 643–656). New York: Springer.

    Google Scholar 

  • Niwa, M., Johnson, J. S., O’Connor, K. N., & Sutter, M. L. (2012). Activity related to perceptual judgment and action in primary auditory cortex (A1). Journal of Neuroscience, 32(9), 3193–3210.

    PubMed  CAS  Google Scholar 

  • Ohl, F. W., & Scheich, H. (1996). Differential frequency conditioning enhances spectral contrast sensitivity of units in auditory cortex (field Al) of the alert Mongolian gerbil. European Journal of Neuroscience, 8, 1001–1017.

    PubMed  CAS  Google Scholar 

  • Ohl, F. W., & Scheich, H. (2005). Learning-induced plasticity in animal and human auditory cortex. Current Opinion in Neurobiology, 15, 470–477.

    PubMed  CAS  Google Scholar 

  • Ohl, F. W., Scheich, H., & Freeman, W. J. (2001). Change in pattern of ongoing cortical activity with auditory category learning. Nature, 412, 733–736.

    PubMed  CAS  Google Scholar 

  • Otazu, G. H., Tai, L. H., Yang, Y., & Zador, A. M. (2009). Engaging in an auditory task suppresses responses in auditory cortex. Nature Neuroscience, 12, 646–654.

    PubMed  CAS  Google Scholar 

  • Pavlov, I. P. (1960). Conditioned reflexes. New York: Dover.

    Google Scholar 

  • Quirk, G. J., Armony, J. L., & LeDoux, J. E. (1997). Fear conditioning enhances different temporal components of tone-evoked spike trains in auditory cortex and lateral amygdale. Neuron, 19, 613–624.

    PubMed  CAS  Google Scholar 

  • Recanzone, G. H., Schreiner, C. E., & Merzenich, M. M. (1993). Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. Journal of Neuroscience, 13, 87–103.

    PubMed  CAS  Google Scholar 

  • Remedios, R., Logothetis, N. K., & Kayser, C. (2009). Monkey drumming reveals common networks for perceiving vocal and nonvocal communication sounds. Proceedings of the National Academy of Sciences of the USA, 106, 18010–18015.

    PubMed  CAS  Google Scholar 

  • Rescorla, R. A., & Wagner, A. R. (1972). In H. Black & W.F. Prokasy (Eds.), A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement, Classical Conditioning II (pp. 64–99). New York: Appleton-Century-Crofts.

    Google Scholar 

  • Ryan, A. F., Miller, J. M., Pfingst, B. E., & Martin, G. K. (1984). Effects of reaction time performance on single-unit activity in the central auditory pathway of the rhesus macaque. Journal of Neuroscience, 4, 298–308.

    PubMed  CAS  Google Scholar 

  • Sakurai, Y. (1994). Involvement of auditory cortical and hippocampal neurons in auditory working memory and reference memory in the rat. Journal of Neuroscience, 4, 2606–2623.

    Google Scholar 

  • Schafer, E. W., & Marcus, M. M. (1973). Self-stimulation alters human sensory brain responses. Science, 181, 175–177.

    PubMed  CAS  Google Scholar 

  • Scheich, H., & Ohl, F. W. (2010). A semantic concept of auditory cortex function and learning. In J. Winer & C. E. Schreiner (Eds.), The auditory cortex (pp. 369–386). New York: Springer.

    Google Scholar 

  • Scheich, H., Brechmann, A., Brosch, M., Budinger, E., Ohl, F.W., Selezneva, E., et al. (2011). Behavioral semantics of learning and crossmodal processing in auditory cortex: The semantic processor concept. Hearing Research, 271, 3–15.

    PubMed  Google Scholar 

  • Schultz, W. (2006). Behavioral theories and the neurophysiology of reward. Annual Reviews in Psychology, 57, 87–115.

    Google Scholar 

  • Scott, B. H., Malone, B. J., & Semple, M. N. (2007). Effect of behavioral context on representation of a spatial cue in core auditory cortex of awake macaques. Journal of Neuroscience, 27, 6489–6499.

    PubMed  CAS  Google Scholar 

  • Selezneva, E., Scheich, H., & Brosch, M. (2006). Dual time scales for categorical decision making in auditory cortex. Current Biology, 16, 2428–2433.

    PubMed  CAS  Google Scholar 

  • Shinba, T., Sumi, M., Iwanami, A., Ozawa, N., & Yamamoto, K. (1995). Increased neuronal firing in the rat auditory cortex associated with preparatory set. Brain Research Bulletin, 37, 199–204.

    PubMed  CAS  Google Scholar 

  • Skinner, B. F. (1938). The behavior of organisms: An experimental analysis. New York: Appleton-Century-Crofts.

    Google Scholar 

  • Squire, L. R., & Zola-Morgan, S. (1991). The medial temporal lobe memory system. Science, 253, 1380–1386.

    PubMed  CAS  Google Scholar 

  • Stark, H., Rothe, T., Wagner, T., & Scheich, H. (2004). Learning a new behavioral strategy in the shuttle-box increases prefrontal dopamine. Neuroscience, 126, 21–29.

    PubMed  CAS  Google Scholar 

  • Stark, H., Rothe, T., Deliano, M., & Scheich, H. (2007). Theta activity attenuation correlates with avoidance learning progress in gerbils. NeuroReport, 18, 549–552.

    PubMed  Google Scholar 

  • Stein, B. E., & Meredith, M. A. (1993). The merging of the senses. Cambridge, MA: MIT Press.

    Google Scholar 

  • Thiele, A. (2009). Optimizing brain processing. Nature Neuroscience, 12, 1359–1360.

    PubMed  CAS  Google Scholar 

  • Thompson, R. F. (2005). In search of memory traces. Annual Reviews in Psychology, 56, 1–23.

    Google Scholar 

  • Thorndike, E. L. (1933). A prove of the law of effect. Science, 77, 173–175.

    PubMed  CAS  Google Scholar 

  • Vaadia, E., Gottlieb, Y., & Abeles, M. (1982). Single-unit activity related to sensorimotor association in auditory cortex of a monkey. Journal of Neurophysiology, 48, 1201–1213.

    PubMed  CAS  Google Scholar 

  • Villa, A. E. (2005). Spatio-temporal patterns of spike occurrences in feely-moving rats associated to perception of human vowels. In R. König, P. Heil, E. Budinger, & H. Scheich (Eds.), Auditory cortex: Towards a synthesis of human and animal research (pp. 275–294). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Villa, A. E., Tetko, I. V., Hyland, B., & Najem, A. (1999). Spatiotemporal activity patterns of rat cortical neurons predict responses in a conditioned task. Proceedings of the National Academy of Sciences of the USA, 96, 1106–1111.

    PubMed  CAS  Google Scholar 

  • Walter, W. G., Cooper, R., Aldridge, V. J., McCallum, W. C., & Winter, A. L. (1964). Contingent negative variation: An electric sign of sensorimotor association and expectancy in the human brain. Nature, 203, 380–383.

    PubMed  CAS  Google Scholar 

  • Weinberger, N. M. (2010). Reconceptualizing the primary auditory cortex: Learning, memory and specific plasticity. In J. Winer & C. E. Schreiner (Eds.), The auditory cortex (pp. 465–491). New York: Springer.

    Google Scholar 

  • Werner-Reiss, U., Kelly, K. A., Trause, A. S., Underhill, A. M., & Groh, J. M. (2003). Eye position affects activity in primary auditory cortex of primates. Current Biology, 13, 554–562.

    PubMed  CAS  Google Scholar 

  • Wetzel, W., Ohl, F. W., & Scheich, H. (2008). Global versus local processing of frequency-modulated tones in gerbils: An animal model of lateralized auditory cortex functions. Proceedings of the National Academy of Sciences of the USA, 105, 6753–6758.

    PubMed  CAS  Google Scholar 

  • Winer, J., & Schreiner, C. E. (2011). The auditory cortex. New York: Springer.

    Google Scholar 

  • Winkler, I., Denham, S. L., & Nelken, I. (2009). Modeling the auditory scene: Predictive regularity representations and perceptual objects. Trends in Cognitive Science, 13(12), 532–540.

    Google Scholar 

  • Witte, R. S., & Kipke, D. R. (2005). Enhanced contrast sensitivity in auditory cortex as cats learn to discriminate sound frequencies. Cognitive Brain Research, 23, 171–184.

    PubMed  Google Scholar 

  • Wolpert, D. M. (1997). Computational approaches to motor control. Trends in Cognitive Science, 1, 209–216.

    CAS  Google Scholar 

  • Woodruff-Pak, D. S., & Disterhoft, J. F. (2008). Where is the trace in trace conditioning? Trends in Neuroscience, 31, 105–112.

    CAS  Google Scholar 

  • Yin, P., Mishkin, M., Sutter, M., & Fritz, J. B. (2008). Early stages of melody processing: stimulus-sequence and task-dependent neuronal activity in monkey auditory cortical fields A1 and R. Journal of Neurophysiology, 100, 3009–3029.

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (SFB 779, SFB TR 31, SFB TR 62) and the Europäischer Fond für regionale Entwicklung (EFRE 2007-2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Scheich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Scheich, H., Brosch, M. (2013). Task-Related Activation of Auditory Cortex. In: Cohen, Y., Popper, A., Fay, R. (eds) Neural Correlates of Auditory Cognition. Springer Handbook of Auditory Research, vol 45. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2350-8_3

Download citation

Publish with us

Policies and ethics