Skip to main content

Optimal Quantity Discount Strategy for an Inventory Model with Deteriorating Items

  • Chapter
  • First Online:
Electrical Engineering and Intelligent Systems

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 130))

  • 1687 Accesses

Abstract

This study discusses quantity discount pricing strategies in a channel of one seller (wholesaler) and one buyer (retailer). The seller purchases products from an upper-leveled supplier (manufacturer) and then sells them to the buyer who faces her/his customers’ demand. The seller attempts to increase her/his profit by controlling the buyer’s order quantity through a quantity discount strategy. The buyer tries to maximize her/his profit considering the seller’s proposal. We formulate the above problem for deteriorating items as a Stackelberg game between the seller and buyer to analyze the existence of the seller’s optimal quantity discount pricing policy, which maximizes her/his total profit per unit of time. Numerical examples are presented to illustrate the theoretical underpinnings of the proposed formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Monahan JP (1984) A quantity discount pricing model to increase vendor’s profit. Manag Sci 30(6):720–726

    Article  Google Scholar 

  2. Rosenblatt MJ, Lee HL (1985) Improving pricing profitability with quantity discounts under fixed demand. IIE Trans 17(4):338–395

    Article  Google Scholar 

  3. Data M, Srikanth KN (1987) A generalized quantity discount pricing model to increase vendor’s profit. Manag Sci 33(10):1247–1252

    Article  Google Scholar 

  4. Lee HL, Rosenblatt MJ (1986) A generalized quantity discount pricing model to increase vendor’s profit. Manag Sci 32(9):1177–1185

    Article  MATH  Google Scholar 

  5. Parlar M, Wang Q (1995) A game theoretical analysis of the quantity discount problem with perfect and incomplete information about the buyer’s cost structure. RAIRO/Oper Res 29(4):415–439

    MATH  Google Scholar 

  6. Sarmah SP, Acharya D, Goyal SK (2006) Buyer vendor coordination models in supply chain management. Eur J Oper Res 175(1):1–15

    Article  MATH  Google Scholar 

  7. Yang PC (2004) Pricing strategy for deteriorating items using quantity discount when demand is price sensitive. Eur J Oper Res 157(2):389–397

    Article  MATH  Google Scholar 

  8. Behrens K, Gaigne C, Ottaviano GIP, Thisse JF (2006) How density economies in international transportation link the internal geography of trading partners. J Urban Econ 60(2):248–263

    Article  Google Scholar 

  9. Kawakatsu H (2011) A wholesaler’s optimal quantity discount policy for deteriorating items. Lecture notes in engineering and computer science. In: Proceedings of the world congress on engineering 2011 (WCE 2011), London, 6–8 July 2011, pp 540–544

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidefumi Kawakatsu .

Editor information

Editors and Affiliations

Appendix A

Appendix A

In this appendix, we discuss the existence of the optimal quantity discount pricing policy, which attains \( {\hat{P}_2}({N_2}) \) in (31.19) when N 2 is fixed to a suitable value.

  1. 1.

    \( {N_2} = 1: \)

    By differentiating P 2(N 2, T 2) in (31.20) with respect to T 2, we have

    $$ \frac{\partial }{{\partial {T_2}}}{P_2}({N_2},{T_2}) = - \frac{{[\rho {\theta_{\rm{b}}}\,{{\text{e}}^{{{\theta_{\rm{b}}}{T_2}}}} - Q({T_2})]({c_{\rm{s}}} + {h_{\rm{b}}}/{\theta_{\rm{b}}} - \alpha ) - ({a_{\rm{b}}} + {a_{\rm{s}}} + \beta )}}{{T_2^2}}. $$
    (31.31)

    It can easily be shown from (31.31) that the sign of \( \partial {P_2}({N_2},{T_2})/\partial {T_2} \) is positive when (c s + h b/θ b − α) = 0. In contrast, in the case of (c s + h b/θ b − α) \( { > {<} \\}<!endgathered> \) 0, \( \partial {P_2}({N_2},{T_2})/\partial {T_2} \geq 0 \) agrees with

    $$ {\theta_{\rm{b}}}{T_2}\,{{{e}}^{{{\theta_{\rm{b}}}{T_2}}}} -({\theta_{\rm{b}}}\,{{{e}}^{{{\theta_{\rm{b}}}{T_2}}}} -1)\begin{array}{lllllllll} < \\= \\>\\\end{array} \frac{{{a_{\rm{b}}} + {a_{\rm{s}}} + \beta }}{{\rho({c_{\rm{s}}} + {h_{\rm{b}}}/{\theta_{\rm{b}}} - \alpha )}} .$$
    (31.32)

    Let L 1(T 2) express the left-hand side of Inequality (31.32), we have

    $$ {L^{\prime}_1}({T_2}) = \theta_{\rm{b}}^2{T_2}\,{{{e}}^{{{\theta_{\rm{b}}}{T_2}}}}\quad ( > 0), $$
    (31.33)
    $$ {L_1}(T_1^{*}) = \frac{{{a_{\rm{b}}}}}{{\rho ({p_{\rm{s}}} + {h_{\rm{b}}}/{\theta_{\rm{b}}})}}\quad ( > 0), $$
    (31.34)
    $$ \mathop{{\lim }}\limits_{{{T_2} \to + \infty }} {L_1}({T_2}) = + \infty . $$
    (31.35)

    From (31.33)–(31.35), the existence of an optimal quantity discount pricing policy can be discussed for the following two subcases:

    • \( ({c_{\rm{s}}} + {h_{\rm{b}}}/{\theta_{\rm{b}}} - \alpha ) > 0: \)

      Equation (31.34) yields

      $$ {L_1}(T_1^{*}) < \frac{{{a_{\rm{b}}} + {a_{\rm{s}}} + \beta }}{{\rho ({c_{\rm{s}}} + {h_{\rm{b}}}/{\theta_{\rm{b}}} - \alpha )}}\quad ( > 0). $$
      (31.36)

      Equations (31.33), (31.35), and (31.36) indicate that the sign of \( \partial {P_2}({N_2},{T_2})/\partial {T_2} \) changes from positive to negative only once. This signifies that P 2(N 2, T 2) first increases and then decreases as T 2 increases, and thus there exists a unique finite \( {\tilde{T}_2} \) (\( > T_1^{*} \)), which maximizes P 2(N 2, T 2) in (31.20). Hence, \( (T_2^{*},{y^{*}}) \)is given by (31.24).

    • \( ({c_{\rm{s}}} + {h_{\rm{b}}}/{\theta_{\rm{b}}} - \alpha ) \leq 0: \)

      In this subcase, we have

      $$ {L_1}(T_1^{*}) > \frac{{{a_{\rm{b}}} + {a_{\rm{s}}} + \beta }}{{\rho ({c_{\rm{s}}} + {h_{\rm{b}}}/{\theta_{\rm{b}}} - \alpha )}}\quad ( < 0). $$
      (31.37)

      Equations (31.33), (31.35), and (31.37) signify that the sign of \( \partial {P_2}({N_2},{T_2})/\partial {T_2} \) is positive, and consequently the optimal policy can be expressed by (31.26).

  2. 2.

    \( {N_2} \geq 2: \)

    By differentiating P 2(N 2, T 2) in (31.20) with respect to T 2, we have

    $$ \frac{\partial }{{\partial {T_2}}}{P_2}({N_2},{T_2}) = - \frac{{L({T_2}) - ({a_b} + \beta ){N_2} - {a_s}}}{{{N_2}T_2^2}}. $$
    (31.38)

    Then \( \partial {P_2}({N_2},{T_2})/\partial {T_2} \geq 0 \) agrees with

    $$ L({N_2},{T_2}) \leq ({a_{\rm{b}}} + \beta ){N_2} + {a_{\rm{s}}}. $$
    (31.39)

    If we assume that there exists a unique solution to (31.28), the optimal quantity discount pricing policy can be given by (31.24).

    In the special case where θ s = θ b = θ and \( \alpha \leq ({h_{\rm{b}}} - {h_{\rm{s}}})/\theta \), by differentiating P 2(N 2, T 2) in (31.20) with respect to T 2, we have

    $$ \begin{array}{lllllllll} {\frac{\partial }{{\partial {T_2}}}{P_2}({N_2},{T_2}) = - \frac{1}{{{N_2}T_2^2}}\left\{ {C\rho \left[ {({N_2}\theta {T_2} - 1){{{e}}^{{{N_2}\theta {T_2}}}} + 1} \right]} \right. - ({a_b} + \beta ){N_2}} \\{\left. { - {a_{\rm{s}}} + H{N_2}\rho \left[ {(\theta {T_2} - 1)\,{{{e}}^{{\theta {T_2}}}} + 1} \right]} \right\}}. \\\end{array} $$
    (31.40)

    Then \( \partial {P_2}({N_2},{T_2})/\partial {T_2} \geq 0 \) agrees with

    $$ C\left[ {({N_2}\theta {T_2} - 1){{{e}}^{{{N_2}\theta {T_2}}}} + 1} \right] + H{N_2}\left[ {(\theta {T_2} - 1)\,{{{e}}^{{\theta {T_2}}}} + 1} \right] \leq \frac{{({a_{\rm{b}}} + \beta ){N_2} + {a_{\rm{s}}}}}{\rho }. $$
    (31.41)

    Let us denote, by L a(T 2), the left-hand side of Inequality (31.41), and we have

    $$ {L^{\prime}_{\rm{a}}}({T_2}) = {\theta^2}{N_2}{T_2}\left( {C{N_2}{{{e}}^{{{N_2}{\theta}{T_2}}}} + H{{{e}}^{{\theta {T_2}}}}} \right)\quad ( > 0), $$
    (31.42)
    $$ \begin{array}{lllllllll} {{L_{\rm{a}}}(T_1^{*}) = C\left[ {({N_2}\theta T_1^{*} - 1){{{e}}^{{{N_2}\theta T_1^{*}}}} + 1} \right]} \\{ + H{N_2}\left[ {(\theta T_1^{*} - 1){{{e}}^{{{\theta}T_1^{*}}}} + 1} \right]}, \\\end{array} $$
    (31.43)
    $$ \mathop{{\lim }}\limits_{{{T_2} \to + \infty }} {L_{\rm{a}}}({T_2}) = + \infty . $$
    (31.44)

    On the basis of the above results, we show below that an optimal quantity discount pricing strategy exits.

    • \( C[({N_2}\theta T_1^{*} - 1){{{e}}^{{{N_2}\theta T_1^{*}}}} + 1] + H{N_2}[(\theta T_1^{*} - 1){{{e}}^{{\theta T_1^{*}}}} + 1] < [({a_{\rm{b}}} <$> <$>+ \beta ){N_2} + {a_{\rm{s}}}]/\rho : \)

      In this subcase, the sign of \( \partial {P_2}({N_2},{T_2})/\partial {T_2} \) varies from positive to negative only once, and consequently there exists a unique finite \( {\tilde{T}_2} \) (\( > T_1^{*} \)), which maximizes P 2(N 2, T 2) in (31.20). Hence, \( (T_2^{*},{y^{*}}) \)is given by (31.24).

    • \( C[({N_2}\theta T_1^{*} - 1){{{e}}^{{{N_2}\theta T_1^{*}}}} + 1] + H{N_2}[(\theta T_1^{*} - 1){{{e}}^{{\theta T_1^{*}}}} + 1] \geq [({a_{\rm{b}}} + \beta ){N_2} + {a_{\rm{s}}}]/\rho : \)

      This subcase provides \( \partial {P_2}({N_2},{T_2})/\partial {T_2} \leq 0 \), and therefore the optimal policy can be expressed by (31.30).

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kawakatsu, H. (2013). Optimal Quantity Discount Strategy for an Inventory Model with Deteriorating Items. In: Ao, SI., Gelman, L. (eds) Electrical Engineering and Intelligent Systems. Lecture Notes in Electrical Engineering, vol 130. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2317-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-2317-1_31

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-2316-4

  • Online ISBN: 978-1-4614-2317-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics