Skip to main content

Auditory Object Analysis

  • Chapter
  • First Online:

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 43))

Abstract

The concept of what constitutes an auditory object is controversial (Kubovy & Van Valkenburg, 2001; Griffi ths & Warren, 2004; Nelken, 2004). It is more difficult to examine the sound pressure waveform that enters the cochlea and “see” different objects in the same way that we “see” objects in the visual input to the retina. However, in both the auditory system and the visual system, objects can be understood in terms of the “images” they produce during the processing of sense data. The idea that objects are mental events that result from the creation of images from sense data goes back to Kant (1929). Visual images, representations in the visual brain corresponding to objects, can be understood as having two spatial dimensions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acoustical terminology. (1960). New York: American Standards Association.

    Google Scholar 

  • Alain, C., & Woods, D. L. (1994). Signal clustering modulates auditory cortical activity in humans. Perception and Psychophysics, 56(5), 501–516.

    PubMed  CAS  Google Scholar 

  • Alain, C., & Izenberg, A. (2003). Effects of attentional load on auditory scene analysis. Journal of Cognitive Neuroscience, 15(7), 1063–1073.

    PubMed  Google Scholar 

  • Anstis, S., & Saida, S. (1985). Adaptation to auditory streaming of frequency-modulated tones. Journal of Experimental Psychology: Human Perception and Performance, 11(3), 257–271.

    Google Scholar 

  • Bee, M. A., & Klump, G. M. (2004). Primitive auditory stream segregation: A neurophysiological study in the songbird forebrain. Journal of Neurophysiology, 92(2), 1088–1104.

    PubMed  Google Scholar 

  • Bee, M. A., & Micheyl, C. (2008). The cocktail party problem: what is it? How can it be solved? And why should animal behaviorists study it? Journal of Comparative Psychology, 122(3), 235–251.

    PubMed  Google Scholar 

  • Bendixen, A., Schröger, E., & Winkler, I. (2009). I heard that coming: event-related potential evidence for stimulus-driven prediction in the auditory system. Journal of Neuroscience, 29(26), 8447–8451.

    PubMed  CAS  Google Scholar 

  • Bendor, D., & Wang, X. (2005). The neuronal representation of pitch in primate auditory cortex. Nature, 436(7054), 1161–1165.

    PubMed  CAS  Google Scholar 

  • Bendor, D., & Wang, X. (2006). Cortical representations of pitch in monkeys and humans. Current Opinion in Neurobiology, 16(4), 391–399.

    PubMed  CAS  Google Scholar 

  • Bizley, J. K., Walker, K. M., Silverman, B. W., King, A. J., & Schnupp, J. W. (2009). Interdependent encoding of pitch, timbre, and spatial location in auditory cortex. Journal of Neuroscience, 29(7), 2064–2075.

    PubMed  CAS  Google Scholar 

  • Boemio, A., Fromm, S., Braun, A., & Poeppel, D. (2005). Hierarchical and asymmetric temporal sensitivity in human auditory cortices. Nature Neuroscience, 8(3), 389–395.

    PubMed  CAS  Google Scholar 

  • Bregman, A. S. (1990). Auditory scene analysis: The perceptual organisation of sound. Cambridge, MA: MIT Press.

    Google Scholar 

  • Bregman, A. S., & Campbell, J. (1971). Primary auditory stream segregation and perception of order in rapid sequences of tones. Journal of Experimental Psychology, 89(2), 244–249.

    PubMed  CAS  Google Scholar 

  • Bregman, A. S., & Dannenbring, G. (1973). The effect of continuity on auditory stream segregation. Perception and Psychophysics, 13(2), 308–312.

    Google Scholar 

  • Bregman, A. S., & Dannenbring, G. L. (1977). Auditory continuity and amplitude edges. Canadian Journal of Psychology, 31(3), 151–159.

    PubMed  CAS  Google Scholar 

  • Carlyon, R. P. (2004). How the brain separates sounds. Trends in Cognitive Sciences, 8(10), 465–471.

    PubMed  Google Scholar 

  • Carlyon, R. P., Cusack, R., Foxton, J. M., & Robertson, I. H. (2001). Effects of attention and unilateral neglect on auditory stream segregation. Journal of Experimental Psychology: Human Perception and Performance, 27(1), 115–127.

    PubMed  CAS  Google Scholar 

  • Carlyon, R. P., Deeks, J., Norris, D., & Butterfield, S. (2002). The continuity illusion and vowel identification. Acta Acustica United with Acustica, 88(3), 408–415.

    Google Scholar 

  • Carlyon, R. P., Micheyl, C., Deeks, J. M., & Moore, B. C. (2004). Auditory processing of real and illusory changes in frequency modulation (FM) phase. Journal of the Acoustical Society of America, 116(6), 3629–3639.

    PubMed  Google Scholar 

  • Chait, M., Poeppel, D., Simon, J. Z. (2008). Auditory temporal edge detection in human auditory cortex. Brain Research, 1213, 78–90.

    PubMed  CAS  Google Scholar 

  • Chi, T., Ru, P., & Shamma, S. A. (2005). Multiresolution spectrotemporal analysis of complex sounds. Journal of the Acoustical Society of America, 118(2), 887–906.

    PubMed  Google Scholar 

  • Ciocca, V. (2008). The auditory organization of complex sounds. Frontiers in Bioscience, 13, 148–169.

    PubMed  Google Scholar 

  • Ciocca, V., & Bregman, A. S. (1987). Perceived continuity of gliding and steady-state tones through interrupting noise. Perception and Psychophysics, 42(5), 476–484.

    PubMed  CAS  Google Scholar 

  • Cusack, R. (2005). The intraparietal sulcus and perceptual organization. Journal of Cognitive Neuroscience, 17(4), 641–651.

    PubMed  Google Scholar 

  • Darwin, C. J. (2005). Simultaneous grouping and auditory continuity. Perception and Psychophysics, 67(8), 1384–1390.

    PubMed  CAS  Google Scholar 

  • Darwin, C. J., & Carlyon, R. P. (1995). Auditory Grouping. In B. C. J. Moore (Ed.), Hearing (pp. 387–424). San Diego: Academic Press.

    Google Scholar 

  • de Cheveigné, A. (2005). Pitch perception models. In C. J. Plack, A. J. Oxenham, R. R. Fay & A. N. Popper (Eds.), Pitch: Neural coding and perception (pp. 169–233). New York: Springer-Verlag.

    Google Scholar 

  • Deike, S., Gaschler-Markefski, B., Brechmann, A., & Scheich, H. (2004). Auditory stream segregation relying on timbre involves left auditory cortex. NeuroReport, 15(9), 1511–1514.

    PubMed  Google Scholar 

  • Dyson, B. J., & Alain, C. (2004). Representation of concurrent acoustic objects in primary auditory cortex. Journal of the Acoustical Society of America, 115(1), 280–288.

    PubMed  Google Scholar 

  • Elhilali, M., Ma, L., Micheyl, C., Oxenham, A. J., & Shamma, S. A. (2009). Temporal coherence in the perceptual organization and cortical representation of auditory scenes. Neuron, 61(2), 317–329.

    PubMed  CAS  Google Scholar 

  • Fay, R. R. (2008). Sound source perception and stream segregation in nonhuman vertebrate animals. In W. A. Yost, A. N. Popper & R. R. Fay (Eds.), Auditory perception of sound sources (pp. 307–323). New York: Springer.

    Google Scholar 

  • Fishman, Y. I., & Steinschneider, M. (2010). Formation of auditory streams. In A. Rees & A. Palmer (Eds.), The Oxford handbook of auditory science. The auditory brain. Oxford: Oxford University Press.

    Google Scholar 

  • Fishman, Y. I., Reser, D. H., Arezzo, J. C., & Steinschneider, M. (2001). Neural correlates of auditory stream segregation in primary auditory cortex of the awake monkey. Hearing Research, 151(1–2), 167–187.

    PubMed  CAS  Google Scholar 

  • Friston, K. (2003). Learning and inference in the brain. Neural Networks, 16(9), 1325–1352.

    PubMed  Google Scholar 

  • Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 360(1456), 815–836.

    Google Scholar 

  • Giard, M. H., Perrin, F., Pernier, J., & Bouchet, P. (1990). Brain generators implicated in the processing of auditory stimulus deviance: A topographic event-related potential study. Psychophysiology, 27(6), 627–640.

    PubMed  CAS  Google Scholar 

  • Griffiths, T. D., & Warren, J. D. (2002). The planum temporale as a computational hub. Trends in Neurosciences, 25(7), 348–253.

    PubMed  CAS  Google Scholar 

  • Griffiths, T. D., & Warren, J. D. (2004). What is an auditory object? Nature Reviews Neuroscience, 5(11), 887–892.

    PubMed  CAS  Google Scholar 

  • Griffiths, T. D., Bamiou, D. E., & Warren, J. D. (2009a). Disorders of the auditory brain. In A. Rees & A. R. Palmer (Eds), Oxford handbook of auditory science: The auditory brain (pp. 509–542). Oxford: Oxford University Press.

    Google Scholar 

  • Griffiths, T. D., Kumar, S., Von Kriegstein, K., Overath, T., Stephan, K. E., & Friston, K. J. (2009b). Auditory object analysis. In M. S. Gazzaniga (Ed.), The cognitive neurosciences (pp. 367–381). Cambridge, MA: MIT Press.

    Google Scholar 

  • Gutschalk, A., Patterson, R. D., Scherg, M., Uppenkamp, S., & Rupp, A. (2004). Temporal dynamics of pitch in human auditory cortex. NeuroImage, 22(2), 755–766.

    PubMed  Google Scholar 

  • Gutschalk, A., Micheyl, C., Melcher, J. R., Rupp, A., Scherg, M., & Oxenham, A. J. (2005). Neuromagnetic correlates of streaming in human auditory cortex. Journal of Neuroscience, 25(22), 5382–5388.

    PubMed  CAS  Google Scholar 

  • Gutschalk, A., Oxenham, A. J., Micheyl, C., Wilson, E. C., & Melcher, J. R. (2007). Human cortical activity during streaming without spectral cues suggests a general neural substrate for auditory stream segregation. Journal of Neuroscience, 27(48), 13074–13081.

    PubMed  CAS  Google Scholar 

  • Hall, D. A., & Plack, C. J. (2009). Pitch processing sites in the human auditory brain. Cerebral Cortex, 19(3), 576–585.

    PubMed  Google Scholar 

  • Heinrich, A., Carlyon, R. P., Davis, M. H., & Johnsrude, I. S. (2008). Illusory vowels resulting from perceptual continuity: A functional magnetic resonance imaging study. Journal of Cognitive Neuroscience, 20(10), 1737–1752.

    PubMed  Google Scholar 

  • Kanizsa, G., & Gerbino, W. (1982). Amodal completion: Seeing or thinking? In J. Beck (Ed.), Organization and representation in perception. Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Kant, I. (1929). A critique of pure reason. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kanwal, J. S., Medvedev, A. V., & Micheyl, C. (2003). Neurodynamics for auditory stream segregation: Tracking sounds in the mustached bat’s natural environment. Network, 14(3), 413–435.

    PubMed  Google Scholar 

  • Kluender, K. R., & Jenison, R. L. (1992). Effects of glide slope, noise intensity, and noise duration on the extrapolation of FM glides through noise. Perception and Psychophysics, 51(3), 231–238.

    PubMed  CAS  Google Scholar 

  • Kondo, H. M., & Kashino, M. (2009). Involvement of the thalamocortical loop in the spontaneous switching of percepts in auditory streaming. Journal of Neuroscience, 29(40), 12695–12701.

    PubMed  CAS  Google Scholar 

  • Krumbholz, K., Patterson, R. D., Seither-Preisler, A., Lammertmann, C., & Lutkenhoner, B. (2003). Neuromagnetic evidence for a pitch processing center in Heschl’s gyrus. Cerebral Cortex, 13(7), 765–772.

    PubMed  CAS  Google Scholar 

  • Kubovy, M., & Van Valkenburg, D. (2001). Auditory and visual objects. Cognition., 80(1–2), 97–126.

    CAS  Google Scholar 

  • Kumar, S., Stephan, K. E., Warren, J. D., Friston, K. J., & Griffiths, T. D. (2007). Hierarchical processing of auditory objects in humans. PLoS Computational Biology, 3(6), e100.

    PubMed  Google Scholar 

  • Liegeois-Chauvel, C., Musolino, A., Badier, J. M., Marquis, P., & Chauvel, P. (1994). Evoked potentials recorded from the auditory cortex in man: Evaluation and topography of the middle latency components. Electroencephalography and Clinical Neurophysiology, 92(3), 204–214.

    PubMed  CAS  Google Scholar 

  • Lipp, R., Kitterick, P., Summerfield, Q., Bailey, P. J., & Paul-Jordanov, I. (2010). Concurrent sound segregation based on inharmonicity and onset asynchrony. Neuropsychologia, 48(5), 1417–1425.

    PubMed  Google Scholar 

  • Logothetis, N. K., & Schall, J. D. (1989). Neuronal correlates of subjective visual perception. Science, 245(4919), 761–763.

    PubMed  CAS  Google Scholar 

  • McAdams, S., Winsberg, S., Donnadieu, S., De Soete, G., & Krimphoff, J. (1995). Perceptual scaling of synthesized musical timbres: Common dimensions, specificities, and latent subject classes. Psychological Research, 58(3), 177–192.

    PubMed  CAS  Google Scholar 

  • Micheyl, C., Carlyon, R. P., Shtyrov, Y., Hauk, O., Dodson, T., & Pullvermuller, F. (2003). The neurophysiological basis of the auditory continuity illusion: A mismatch negativity study. Journal of Cognitive Neuroscience, 15(5), 747–758.

    PubMed  Google Scholar 

  • Micheyl, C., Carlyon, R. P., Cusack, R., & Moore, B. C. J. (2005a). Performance measures of auditory organization. In D. Pressnitzer, A. de Cheveigné, S. McAdams & L. Collet (Eds.), Auditory signal processing: Physiology, psychoacoustics, and models (pp. 203–211). New York: Springer.

    Google Scholar 

  • Micheyl, C., Tian, B., Carlyon, R. P., & Rauschecker, J. P. (2005b). Perceptual organization of tone sequences in the auditory cortex of awake macaques. Neuron, 48(1), 139–148.

    PubMed  CAS  Google Scholar 

  • Micheyl, C., Carlyon, R. P., Gutschalk, A., Melcher, J. R., Oxenham, A. J., Rauschecker, J. P., Tian, B., & Courtenay Wilson, E. (2007). The role of auditory cortex in the formation of auditory streams. Hearing Research, 229(1–2), 116–131.

    PubMed  Google Scholar 

  • Micheyl, C., Hunter, C., & Oxenham, A. J. (2010). Auditory stream segregation and the perception of across-frequency synchrony. Journal of Experimental Psychology: Human Perception and Performance, 36(4), 1029–1039.

    PubMed  Google Scholar 

  • Middlebrooks, J. C., Clock, A. E., Xu, L., & Green, D. M. (1994). A panoramic code for sound location by cortical neurons. Science, 264(5160), 842–844.

    PubMed  CAS  Google Scholar 

  • Miller, C. T., Dibble, E., & Hauser, M. D. (2001). Amodal completion of acoustic signals by a nonhuman primate. Nature Neuroscience, 4(8), 783–784.

    PubMed  CAS  Google Scholar 

  • Miller, L. M., & Recanzone, G. H. (2009). Populations of auditory cortical neurons can accurately encode acoustic space across stimulus intensity. Proceedings of the National Academy of Sciences of the USA, 106(14), 5931–5935.

    PubMed  CAS  Google Scholar 

  • Moore, B. C. J., & Gockel, H. (2002). Factors influencing sequential stream segregation. Acta Acustica United with Acustica, 88, 320–333.

    Google Scholar 

  • Nelken, I. (2004). Processing of complex stimuli and natural scenes in the auditory cortex. Current Opinion in Neurobiology, 14(4), 474–480.

    PubMed  CAS  Google Scholar 

  • Overath, T., Kumar, S., von Kriegstein, K., & Griffiths, T. D. (2008). Encoding of spectral correlation over time in auditory cortex. Journal of Neuroscience, 28(49), 13268–13273.

    PubMed  CAS  Google Scholar 

  • Overath, T., Cusack, R., Kumar, S., von Kriegstein, K., Warren, J. D., Grube, M., et al. (2007). An information theoretic characterisation of auditory encoding. PLoS Biol, 5(11), e288.

    PubMed  Google Scholar 

  • Overath, T., Kumar, S., Stewart, L., von Kriegstein, K., Cusack, R., Rees, A., & Griffiths, T. D. (2010). Cortical mechanisms for the segregation and representation of acoustic textures. Journal of Neuroscience, 30(6), 2070–2076.

    PubMed  CAS  Google Scholar 

  • Parker, A. J., & Newsome, W. T. (1998). Sense and the single neuron: probing the physiology of perception. Annual Review of Neuroscience, 21, 227–277.

    PubMed  CAS  Google Scholar 

  • Patterson, R. D. (2000). Auditory images: How complex sounds are represented in the auditory system. Journal of the Acoustical Society of Japan, 21, 183–190.

    Google Scholar 

  • Patterson, R. D., Uppenkamp, S., Johnsrude, I. S., & Griffiths, T. D. (2002). The processing of temporal pitch and melody information in auditory cortex. Neuron, 36(4), 767–776.

    PubMed  CAS  Google Scholar 

  • Pelucchi, B., Hay, J. F., & Saffran, J. R. (2009). Statistical learning in a natural language by 8-month-old infants. Child Development, 80(3), 674–685.

    PubMed  Google Scholar 

  • Petkov, C. I., O’Connor, K. N., & Sutter, M. L. (2003). Illusory sound perception in macaque monkeys. Journal of Neuroscience, 23(27), 9155–9161.

    PubMed  CAS  Google Scholar 

  • Petkov, C. I., O’Connor, K. N., & Sutter, M. L. (2007). Encoding of illusory continuity in primary auditory cortex. Neuron, 54(1), 153–165.

    PubMed  CAS  Google Scholar 

  • Plack, C. J., & White, L. J. (2000). Perceived continuity and pitch perception. Journal of the Acoustical Society of America, 108(3 Pt 1), 1162–1169.

    PubMed  CAS  Google Scholar 

  • Pressnitzer, D., & Hupé, J. M. (2006). Temporal dynamics of auditory and visual bistability reveal common principles of perceptual organization. Current Biology, 16(13), 1351–1357.

    PubMed  CAS  Google Scholar 

  • Pressnitzer, D., Meddis, R., Delahaye, R., & Winter, I. M. (2001). Physiological correlates of comodulation masking release in the mammalian ventral cochlear nucleus. Journal of Neuroscience, 21(16), 6377–6386.

    PubMed  CAS  Google Scholar 

  • Pressnitzer, D., Sayles, M., Micheyl, C., & Winter, I. M. (2008). Perceptual organization of sound begins in the auditory periphery. Current Biology, 18(15), 1124–1128.

    PubMed  CAS  Google Scholar 

  • Puschmann, S., Uppenkamp, S., Kollmeier, B., & Thiel, C. M. (2009). Dichotic pitch activates pitch processing centre in Heschl’s gyrus. NeuroImage.

    Google Scholar 

  • Rao, R. P., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1), 79–87.

    PubMed  CAS  Google Scholar 

  • Riecke, L., van Opstal, A. J., Goebel, R., & Formisano, E. (2007). Hearing illusory sounds in noise: Sensory-perceptual transformations in primary auditory cortex. Journal of Neuroscience, 27(46), 12684–12689.

    PubMed  CAS  Google Scholar 

  • Riecke, L., Mendelsohn, D., Schreiner, C., & Formisano, E. (2009a). The continuity illusion adapts to the auditory scene. Hearing Research, 247(1), 71–77.

    PubMed  Google Scholar 

  • Riecke, L., Esposito, F., Bonte, M., & Formisano, E. (2009b). Hearing illusory sounds in noise: The timing of sensory-perceptual transformations in auditory cortex. Neuron, 64(4), 550–561.

    PubMed  CAS  Google Scholar 

  • Roberts, B., Glasberg, B. R., & Moore, B. C. (2008). Effects of the build-up and resetting of auditory stream segregation on temporal discrimination. Journal of Experimental Psychology: Human Perception and Performance, 34(4), 992–1006.

    PubMed  Google Scholar 

  • Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science, 274, 1926–1928.

    PubMed  CAS  Google Scholar 

  • Saffran, J. R., Johnson, E. K., Aslin, R. N., & Newport, E. L. (1999). Statistical learning of tone sequences by human infants and adults. Cognition, 70, 27–52.

    PubMed  CAS  Google Scholar 

  • Samuel, A. G. (1981). Phonemic restoration: insights from a new methodology. Journal of Experimental Psychology: General, 110(4), 474–494.

    CAS  Google Scholar 

  • Schadwinkel, S., & Gutschalk, A. (2010). Activity associated with stream segregation in human auditory cortex is similar for spatial and pitch cues. Cerebral Cortex, in press.

    Google Scholar 

  • Shahin, A. J., Bishop, C. W., & Miller, L. M. (2009). Neural mechanisms for illusory filling-in of degraded speech. NeuroImage, 44(3), 1133–1143.

    PubMed  Google Scholar 

  • Shamma, S. (2008). On the emergence and awareness of auditory objects. PLoS Biology, 6(6), e155.

    PubMed  Google Scholar 

  • Shamma, S. A., & Micheyl, C. (2010). Behind the scenes of auditory perception. Current Opinion in Neurobiology, 20(3), 361–366.

    PubMed  CAS  Google Scholar 

  • Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27, 379–423 and 623–656.

    Google Scholar 

  • Snyder, J. S., & Alain, C. (2007). Toward a neurophysiological theory of auditory stream segregation. Psychological Bulletin, 133(5), 780–799.

    PubMed  Google Scholar 

  • Snyder, J. S., Alain, C., & Picton, T. W. (2006). Effects of attention on neuroelectric correlates of auditory stream segregation. Journal of Cognitive Neuroscience, 18(1), 1–13.

    PubMed  Google Scholar 

  • Snyder, J. S., Holder, W. T., Weintraub, D. M., Carter, O. L., & Alain, C. (2009). Effects of prior stimulus and prior perception on neural correlates of auditory stream segregation. Psychophysiology, 46(6), 1208–1215.

    PubMed  Google Scholar 

  • Sugita, Y. (1997). Neuronal correlates of auditory induction in the cat cortex. NeuroReport, 8(5), 1155–1159.

    PubMed  CAS  Google Scholar 

  • Sussman, E., Ritter, W., & Vaughan, H. G. J. (1998). Attention affects the organization of auditory input associated with the mismatch negativity system. Brain Research, 789(1), 130–138.

    PubMed  CAS  Google Scholar 

  • Sussman, E., Ritter, W., & Vaughan, H. G. J. (1999). An investigation of the auditory streaming effect using event-related brain potentials. Psychophysiology, 36(1), 22–34.

    PubMed  CAS  Google Scholar 

  • Sussman, E. S., Horvath, J., Winkler, I., & Orr, M. (2007). The role of attention in the formation of auditory streams. Perception and Psychophysics, 69(1), 136–152.

    PubMed  Google Scholar 

  • Tougas, Y., & Bregman, A. S. (1990). Auditory streaming and the continuity illusion. Perception and Psychophysics, 47(2), 121–126.

    PubMed  CAS  Google Scholar 

  • van Noorden, L. P. A. S. (1975). Temporal coherence in the perception of tone sequences.University of Technology, Eindhoven.

    Google Scholar 

  • von Helmholtz, H. L. F. (1885). On the sensations of tone, 4th (English translation 1912) ed. London: Longmans.

    Google Scholar 

  • Warren, J. D., Jennings, A. R., & Griffiths, T. D. (2005). Analysis of the spectral envelope of sounds by the human brain. NeuroImage, 24(4), 1052–1057.

    PubMed  CAS  Google Scholar 

  • Warren, R. M. (1970). Perceptual restoration of missing speech sounds. Science, 167(917), 392–393.

    PubMed  CAS  Google Scholar 

  • Warren, R. M., & Obusek, C. J. (1971). Speech perception and phonemic restorations. Perception and Psychophysics, 9, 358–362.

    Google Scholar 

  • Warren, R. M., Obusek, C. J., & Ackroff, J. M. (1972). Auditory induction: Perceptual synthesis of absent sounds. Science, 176(39), 1149–1151.

    PubMed  CAS  Google Scholar 

  • Wilson, E. C., Melcher, J. R., Micheyl, C., Gutschalk, A., & Oxenham, A. J. (2007). Cortical FMRI activation to sequences of tones alternating in frequency: Relationship to perceived rate and streaming. Journal of Neurophysiology, 97(3), 2230–2238.

    PubMed  Google Scholar 

Download references

Acknowledgments

Griffiths is a Wellcome Trust Senior Clinical Fellow. Griffiths and Overath are supported by the Wellcome Trust, UK (WT091681MA). Micheyl is supported by the National Institute of Health, USA (R01 for Chris’ NIH grant: DC07657).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy D. Griffiths .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Griffiths, T.D., Micheyl, C., Overath, T. (2012). Auditory Object Analysis. In: Poeppel, D., Overath, T., Popper, A., Fay, R. (eds) The Human Auditory Cortex. Springer Handbook of Auditory Research, vol 43. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2314-0_8

Download citation

Publish with us

Policies and ethics