Skip to main content

Recording Event-Related Brain Potentials: Application to Study Auditory Perception

  • Chapter
  • First Online:
The Human Auditory Cortex

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 43))

Abstract

The last decade has seen an explosion of research in auditory perception and cognition. This growing activity encompasses neurophysiological research in nonhuman species, computational modeling of basic neurophysiological functions, and neuroimaging research in humans. Among the various neuroimaging techniques available, scalp recording of neuroelectric (electroencephalography [EEG]) and neuromagnetic (magnetoencephalography [MEG]) (see Nagarajan, Gabriel, and Herman, Chapter 5) brain activity have proven to be formidable tools in the arsenal available to cognitive neuroscientists interested in understanding audition. These techniques measure the dynamic pattern of electromagnetic fields at the scalp produced by the coherent activity of large neuronal populations in the brain. In cognitive neuroscience, the measurement of the electrical event-related brain potentials (ERPs) or magnetic event-related fields (ERFs) is among the major noninvasive techniques used for investigating sensory and cognitive information processing and for testing specific assumptions of cognitive theories that are not easily amenable to behavioral techniques. After identifying and characterizing the ERP/ERF signals that accompany the basic steps of processing discrete events, scientific interest has gradually shifted toward specifying the complex processing of more realistic stimulus configurations. In the auditory modality, recent years have seen an upsurge of research papers investigating the processes of auditory scene analysis (ASA) by ERP/ERF methods (for recent reviews, see Alain, 2007; Snyder & Alain, 2007; Winkler et al., 2009a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alain, C. (2007). Breaking the wave: Effects of attention and learning on concurrent sound perception. Hearing Research, 229(1–2), 225–236.

    Google Scholar 

  • Alain, C., & Arnott, S. R. (2000). Selectively attending to auditory objects. Frontiers in Biosciences, 5, D202–212.

    CAS  Google Scholar 

  • Alain, C., & Bernstein, L. J. (2008). From sounds to meaning: The role of attention during auditory scene analysis. Current Opinion in Otolaryngology & Head and Neck Surgery, 16, 485–489.

    Google Scholar 

  • Alain, C., & Izenberg, A. (2003). Effects of attentional load on auditory scene analysis. Journal of Cognitive Neuroscience, 15(7), 1063–1073.

    PubMed  Google Scholar 

  • Alain, C., & Woods, D. L. (1994). Signal clustering modulates auditory cortical activity in humans. Perception & Psychophysics, 56(5), 501–516.

    CAS  Google Scholar 

  • Alain, C., Woods, D. L., & Ogawa, K. H. (1994). Brain indices of automatic pattern processing. NeuroReport, 6(1), 140–144.

    PubMed  CAS  Google Scholar 

  • Alain, C., Cortese, F., & Picton, T. W. (1999). Event-related brain activity associated with auditory pattern processing. NeuroReport, 10(11), 2429–2434.

    PubMed  CAS  Google Scholar 

  • Alain, C., Arnott, S. R., & Picton, T. W. (2001). Bottom-up and top-down influences on auditory scene analysis: Evidence from event-related brain potentials. Journal of Experimental Psychology: Human Perception and Performormance, 27(5), 1072–1089.

    CAS  Google Scholar 

  • Alain, C., Reinke, K., He, Y., Wang, C., & Lobaugh, N. (2005). Hearing two things at once: Neurophysiological indices of speech segregation and identification. Journal of Cognitive Neuroscience, 17(5), 811–818.

    PubMed  Google Scholar 

  • Alain, C., Snyder, J. S., He, Y., & Reinke, K. S. (2007). Changes in auditory cortex parallel rapid perceptual learning. Cerebral Cortex, 17(5), 1074–1084.

    PubMed  Google Scholar 

  • Alain, C., Quan, J., McDonald, K., & Van Roon, P. (2009a). Noise-induced increase in human auditory evoked neuromagnetic fields. European Journal of Neuroscience, 30(1), 132–142.

    PubMed  Google Scholar 

  • Alain, C., McDonald, K. L., Kovacevic, N., & McIntosh, A. R. (2009b). Spatiotemporal analysis of auditory what” and “where” working memory. Cerebral Cortex, 19(2), 305–314.

    PubMed  Google Scholar 

  • Alain, C., Campeanu, S., & Tremblay, K. (2010). Changes in sensory evoked responses coincide with rapid improvement in speech identification performance. Journal of Cognitive Neuroscience, 22(2), 392–403.

    PubMed  Google Scholar 

  • Alho, K., Escera, C., Diaz, R., Yago, E., & Serra, J. M. (1997). Effects of involuntary auditory attention on visual task performance and brain activity. NeuroReport, 8(15), 3233–3237.

    PubMed  CAS  Google Scholar 

  • Arnott, S. R., & Alain, C. (2002). Effects of perceptual context on event-related brain potentials during auditory spatial attention. Psychophysiology, 39(5), 625–632.

    PubMed  Google Scholar 

  • Bar, M. (2007). The proactive brain: Using analogies and associations to generate predictions. Trends in Cognitive Sciences, 11(7), 280–289.

    PubMed  Google Scholar 

  • Bendixen, A., Prinz, W., Horváth, J., Trujillo-Barreto, N. J., & Schröger, E. (2008). Rapid extraction of auditory feature contingencies. NeuroImage, 41(3), 1111–1119.

    PubMed  Google Scholar 

  • Bendixen, A., Schröger, E., & Winkler, I. (2009). I heard that coming: Event-related potential evidence for stimulus-driven prediction in the auditory system. Journal of Neuroscience, 29(26), 8447–8451.

    PubMed  CAS  Google Scholar 

  • Benoit, C., Mohamadi, T., & Kandel, S. (1994). Effects of phonetic context on audio-visual intelligibility of French. Journal of Speech and Hearing Research, 37(5), 1195–1203.

    PubMed  CAS  Google Scholar 

  • Berti, S., & Schröger, E. (2001). A comparison of auditory and visual distraction effects: Behavioral and event-related indices. Cognitive Brain Research, 10(3), 265–273.

    PubMed  CAS  Google Scholar 

  • Bertrand, O., & Tallon-Baudry, C. (2000). Oscillatory gamma activity in humans: A possible role for object representation. International Journal of Psychophysiology, 38(3), 211–223.

    PubMed  CAS  Google Scholar 

  • Bregman, A. S. (1990). Auditory scene analysis: The perceptual organization of sounds. London: The MIT Press.

    Google Scholar 

  • Carlyon, R. P., Cusack, R., Foxton, J. M., & Robertson, I. H. (2001). Effects of attention and unilateral neglect on auditory stream segregation. Journal of Experimental Psychology: Human Perception and Performance, 27(1), 115–127.

    PubMed  CAS  Google Scholar 

  • Carlyon, R. P., Plack, C. J., Fantini, D. A., & Cusack, R. (2003). Cross-modal and non-sensory influences on auditory streaming. Perception, 32(11), 1393–1402.

    PubMed  Google Scholar 

  • Cusack, R., Deeks, J., Aikman, G., & Carlyon, R. P. (2004). Effects of location, frequency region, and time course of selective attention on auditory scene analysis. Journal of Experimental Psychology: Human Perception and Performance, 30(4), 643–656.

    PubMed  Google Scholar 

  • Davis, P. A. (1939). Effects of acoustic stimuli on the waking human brain. Journal of Neurophysiology, 2, 494–499.

    Google Scholar 

  • Denham, S. L., & Winkler, I. (2006). The role of predictive models in the formation of auditory streams. Journal of Physiology (Paris), 100(1–3), 154–170.

    PubMed  CAS  Google Scholar 

  • Denham, S. L., Gyimesi, K., Stefanics, G., & Winkler, I. (2010). Stability of perceptual organisation in auditory streaming. In E. A. Lopez-Poveda, A. R. Palmer, & R. Meddis (Eds.), The neurophysiological bases of auditory perception (pp. 477–488). New York: Springer.

    Google Scholar 

  • Deouell, L. Y., Deutsch, D., Scabini, D., & Knight, R. T. (2008). No disullusions in auditory extinction: Perceived a melody comprised of unperceived notes. Frontiers in Human Neuroscience, 1, 1–6.

    Google Scholar 

  • Deutsch, D. (1975). Two-channel listening to musical scales. Journal of the Acoustical Society of America, 57(5), 1156–1160.

    PubMed  CAS  Google Scholar 

  • Dowling, W. J. (1973). Rhythmic groups and subjective chuncks in memory for melodies. Perception & Psychophysics, 14, 37–40.

    Google Scholar 

  • Du, Y., He, Y., Ross, B., Bardouille, T., Wu, X., Li, L., & Alain, C. (2011). Human auditory cortex activity shows additive effects of spectral and spatial cues during speech segregation. Cerebral Cortex, 21(3), 698–707.

    PubMed  Google Scholar 

  • Dyson, B. J., Alain, C., & He, Y. (2005). Effects of visual attentional load on low-level auditory scene analysis. Cognitive, Affective, & Behavioral Neuroscience, 5(3), 319–338.

    Google Scholar 

  • Fowler, C. A., & Rosenblum, L. D. (1990). Duplex perception: a comparison of monosyllables and slamming doors. Journal of Experimental Psychology: Human Perception and Performance, 16(4), 742–754.

    PubMed  CAS  Google Scholar 

  • Garrido, M. I., Kilner, J. M., Stephan, K. E., & Friston, K. J. (2009). The mismatch negativity: A review of underlying mechanisms. Clinical Neurophysiology, 120(3), 453–463.

    PubMed  Google Scholar 

  • Gomes, H., Bernstein, R., Ritter, W., Vaughan, H. G., Jr., & Miller, J. (1997). Storage of feature conjunctions in transient auditory memory. Psychophysiology, 34(6), 712–716.

    PubMed  CAS  Google Scholar 

  • Gregory, R. L. (1980). Perceptions as hypotheses. Philosophical Transactions of the Royal Society B: Biological Sciences, 290(1038), 181–197.

    CAS  Google Scholar 

  • Griffiths, T. D., & Warren, J. D. (2004). What is an auditory object? Nature Review Neuroscience, 5(11), 887–892.

    CAS  Google Scholar 

  • Gutschalk, A., Micheyl, C., Melcher, J. R., Rupp, A., Scherg, M., & Oxenham, A. J. (2005). Neuromagnetic correlates of streaming in human auditory cortex. Journal of Neuroscience, 25(22), 5382–5388.

    PubMed  CAS  Google Scholar 

  • Hansen, J. C., & Hillyard, S. A. (1980). Endogenous brain potentials associated with selective auditory attention. Electroencephalography and Clinical Neurophysiology, 49(3–4), 277–290.

    PubMed  CAS  Google Scholar 

  • Hartmann, W. M., & Johnson, D. (1991). Stream segregation and pereipheral channelling. Music Perception, 9, 155–184.

    Google Scholar 

  • Helfer, K. S., & Freyman, R. L. (2005). The role of visual speech cues in reducing energetic and informational masking. Journal of the Acoustical Society of America, 117(2), 842–849.

    PubMed  Google Scholar 

  • Jones, M. R., Kidd, G., & Wetzel, R. (1981). Evidence for rhythmic attention. Journal of Experimental Psychology: Human Perception and Performance, 7(5), 1059–1073.

    PubMed  CAS  Google Scholar 

  • Köhler, W. (1947). Gestalt psychology. New York: Liveright.

    Google Scholar 

  • Kujala, T., Tervaniemi, M., & Schröger, E. (2007). The mismatch negativity in cognitive and clinical neuroscience: Theoretical and methodological considerations. Biological Psychology, 74(1), 1–19.

    PubMed  Google Scholar 

  • Luck, S. J. (2005). An introduction to the event-related potential technique. Cambridge, MA: MIT Press.

    Google Scholar 

  • Mazaheri, A., & Picton, T. W. (2005). EEG spectral dynamics during discrimination of auditory and visual targets. Cognitive Brain Research, 24(1), 81–96.

    PubMed  Google Scholar 

  • McDonald, K. L., & Alain, C. (2005). Contribution of harmonicity and location to auditory object formation in free field: Evidence from event-related brain potentials. Journal of the Acoustical Society of America, 118(3 Pt 1), 1593–1604.

    PubMed  Google Scholar 

  • Moore, B. C., & Gockel, H. (2002). Factors influencing sequential stream segregation. Acta Acustica United with Acustica, 88, 320–333.

    Google Scholar 

  • Moore, B. C., Glasberg, B. R., & Peters, R. W. (1986). Thresholds for hearing mistuned partials as separate tones in harmonic complexes. Journal of the Acoustical Society of America, 80(2), 479–483.

    PubMed  CAS  Google Scholar 

  • Näätänen, R. (1982). Processing negativity: An evoked-potential reflection of selective attention. Psychological Bulletin, 92(3), 605–640.

    PubMed  Google Scholar 

  • Näätänen, R., & Picton, T. (1987). The N1 wave of the human electric and magnetic response to sound: A review and an analysis of the component structure. Psychophysiology, 24(4), 375–425.

    PubMed  Google Scholar 

  • Näätänen, R., Gaillard, A. W., & Mantysalo, S. (1978). Early selective-attention effect on evoked potential reinterpreted. Acta Psychologica (Amst), 42(4), 313–329.

    PubMed  Google Scholar 

  • Näätänen, R., Tervaniemi, M., Sussman, E., Paavilainen, P., & Winkler, I. (2001). “Primitive intelligence” in the auditory cortex. Trends in Neurosciences, 24(5), 283–288.

    PubMed  Google Scholar 

  • Nelken, I., & Ulanovsky, N. (2007). Mismatch negativity and stimulus-specific adaptation in animal models. Journal of Psychophysiology, 21, 221–223.

    Google Scholar 

  • Nunez, P. L., & Srinivasan, R. (2006). Electric fields of the brain: The neurophysics of EEG. Oxford: Oxford University Press.

    Google Scholar 

  • Paavilainen, P., Arajärvi, P., & Takegata, R. (2007). Preattentive detection of nonsalient contingencies between auditory features. NeuroReport, 18(2), 159–163.

    PubMed  Google Scholar 

  • Pettigrew, C. M., Murdoch, B. E., Ponton, C. W., Kei, J., Chenery, H. J., & Alku, P. (2004). Subtitled videos and mismatch negativity (MMN) investigations of spoken word processing. Journal of the American Academy of Audiology, 15(7), 469–485.

    PubMed  Google Scholar 

  • Picton, T. W. (1992). The P300 wave of the human event-related potential. Journal of Clinical Neurophysiology, 9(4), 456–479.

    PubMed  CAS  Google Scholar 

  • Picton, T. W. (2010). Human auditory evoked potentials. San Diego: Plural Publishing.

    Google Scholar 

  • Picton, T. W., Alain, C., Woods, D. L., John, M. S., Scherg, M., Valdes-Sosa, P., et al. (1999). Intracerebral sources of human auditory-evoked potentials. Audiology and Neurootology, 4(2), 64–79.

    CAS  Google Scholar 

  • Picton, T. W., Alain, C., Otten, L., Ritter, W., & Achim, A. (2000). Mismatch negativity: Different water in the same river. Audiology and Neurootology, 5(3–4), 111–139.

    CAS  Google Scholar 

  • Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128–2148.

    PubMed  Google Scholar 

  • Rahne, T., & Bockmann-Barthel, M. (2009). Visual cues release the temporal coherence of auditory objects in auditory scene analysis. Brain Research, 1300, 125–134.

    PubMed  CAS  Google Scholar 

  • Rahne, T., Bockmann, M., von Specht, H., & Sussman, E. S. (2007). Visual cues can modulate integration and segregation of objects in auditory scene analysis. Brain Research, 1144, 127–135.

    PubMed  CAS  Google Scholar 

  • Reinke, K. S., He, Y., Wang, C., & Alain, C. (2003). Perceptual learning modulates sensory evoked response during vowel segregation. Cognitive Brain Research, 17(3), 781–791.

    PubMed  Google Scholar 

  • Remez, R. E., Rubin, P. E., Berns, S. M., Pardo, J. S., & Lang, J. M. (1994). On the perceptual organization of speech. Psychological Review, 101(1), 129–156.

    PubMed  CAS  Google Scholar 

  • Remez, R. E., Ferro, D. F., Wissig, S. C., & Landau, C. A. (2008). Asynchrony tolerance in the perceptual organization of speech. Psychonomic Bulletin & Reviews, 15(4), 861–865.

    Google Scholar 

  • Ritter, W., & Ruchkin, D. S. (1992). A review of event-related potential components discovered in the context of studying P3. Annals of the New York Academy of Sciences, 658, 1–32.

    PubMed  CAS  Google Scholar 

  • Ritter, W., Sussman, E., & Molholm, S. (2000). Evidence that the mismatch negativity system works on the basis of objects. Neuroreport, 11(1), 61–63.

    PubMed  CAS  Google Scholar 

  • Ritter, W., De Sanctis, P., Molholm, S., Javitt, D. C., & Foxe, J. J. (2006). Preattentively grouped tones do not elicit MMN with respect to each other. Psychophysiology, 43(5), 423–430.

    PubMed  Google Scholar 

  • Ross, B., Hillyard, S. A., & Picton, T. W. (2010). Temporal dynamics of selective attention during dichotic listening. Cerebral Cortex, 20(6), 1360–1371.

    PubMed  Google Scholar 

  • Rossi-Katz, J., & Arehart, K. H. (2009). Message and talker identification in older adults: effects of task, distinctiveness of the talkers’ voices, and meaningfulness of the competing message. Journal of Speech, Language, and Hearing Research, 52(2), 435–453.

    PubMed  Google Scholar 

  • Sarvas, J. (1987). Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Physics in Medicine & Biology, 32(1), 11–22.

    CAS  Google Scholar 

  • Schröger, E., & Wolff, C. (1998a). Behavioral and electrophysiological effects of task-irrelevant sound change: A new distraction paradigm. Cognitive Brain Research, 7(1), 71–87.

    PubMed  Google Scholar 

  • Schröger, E., & Wolff, C. (1998b). Attentional orienting and reorienting is indicated by human event-related brain potentials. NeuroReport, 9(15), 3355–3358.

    PubMed  Google Scholar 

  • Snyder, J. S., & Alain, C. (2007). Toward a neurophysiological theory of auditory stream segregation. Psychological Bulletin, 133(5), 780–799.

    PubMed  Google Scholar 

  • Snyder, J. S., Alain, C., & Picton, T. W. (2006). Effects of attention on neuroelectric correlates of auditory stream segregation. Journal of Cognitive Neuroscience, 18(1), 1–13.

    PubMed  Google Scholar 

  • Snyder, J. S., Carter, O. L., Hannon, E. E., & Alain, C. (2009a). Adaptation reveals multiple levels of representation in auditory stream segregation. Journal of Expermental Psychology: Humnan Perception and Performance, 35(4), 1232–1244.

    Google Scholar 

  • Snyder, J. S., Holder, W. T., Weintraub, D. M., Carter, O. L., & Alain, C. (2009b). Effects of prior stimulus and prior perception on neural correlates of auditory stream segregation. Psychophysiology, 46(6), 1208–1215.

    PubMed  Google Scholar 

  • Sommers, M. S., Tye-Murray, N., & Spehar, B. (2005). Auditory-visual speech perception and auditory-visual enhancement in normal-hearing younger and older adults. Ear and Hearing, 26(3), 263–275.

    PubMed  Google Scholar 

  • Stefanics, G., Hangya, B., Hernadi, I., Winkler, I., Lakatos, P., & Ulbert, I. (2010). Phase entrainment of human delta oscillations can mediate the effects of expectation on reaction speed. Journal of Neuroscience, 30(41), 13578–13585.

    PubMed  CAS  Google Scholar 

  • Summerfield, C., & Egner, T. (2009). Expectation (and attention) in visual cognition. Trends in Cognitive Sciences, 13(9), 403–409.

    PubMed  Google Scholar 

  • Summerfield, Q. (1992). Lipreading and audio-visual speech perception. Philosophical Transaction of the Royal Society:Biological Sciences, 335(1273), 71–78.

    CAS  Google Scholar 

  • Sussman, E., Ritter, W., & Vaughan, H. G., Jr. (1999). An investigation of the auditory streaming effect using event-related brain potentials. Psychophysiology, 36(1), 22–34.

    PubMed  CAS  Google Scholar 

  • Sussman, E. S., Bregman, A. S., Wang, W. J., & Khan, F. J. (2005). Attentional modulation of electrophysiological activity in auditory cortex for unattended sounds within multistream auditory environments. Cognitive, Affective, and Behavioral Neuroscience, 5(1), 93–110.

    CAS  Google Scholar 

  • Sussman, E. S., Horváth, J., Winkler, I., & Orr, M. (2007). The role of attention in the formation of auditory streams. Perception & Psychophysics, 69(1), 136–152.

    Google Scholar 

  • Takegata, R., Brattico, E., Tervaniemi, M., Varyagina, O., Näätänen, R., & Winkler, I. (2005). Preattentive representation of feature conjunctions for concurrent spatially distributed auditory objects. Cognitive Brain Research, 25(1), 169–179.

    PubMed  Google Scholar 

  • Treisman, A. I. E. (1993). The perception of features and objects. In A. Baddeley & L. Weiskrantz (Eds.), Attention: Selection, awareness, & control. A tribute to Donald Broadbent (pp. 5–35). Oxford: Clarendon Press.

    Google Scholar 

  • van Noorden, L. P. A. S. (1975). Temporal coherence in the perception of tone sequences. Doctoral dissertation, Eindhoven University of Technology.

    Google Scholar 

  • van Zuijen, T. L., Sussman, E., Winkler, I., Näätänen, R., & Tervaniemi, M. (2005). Auditory organization of sound sequences by a temporal or numerical regularity: A mismatch negativity study comparing musicians and non-musicians. Cognitive Brain Research, 23(2–3), 270–276.

    PubMed  Google Scholar 

  • Verleger, R. (1988). Event-related potentials and cognition: A critique of the context updating hypothesis and an alternative interpretation of P3. Behavioral and Brain Sciences, 11(3), 343–356.

    Google Scholar 

  • Winkler, I. (2007). Interpreting the mismatch negativity (MMN). Journal of Psychophysiology, 21(3–4), 147–163.

    Google Scholar 

  • Winkler, I., & Czigler, I. (1998). Mismatch negativity: Deviance detection or the maintenance of the ’standard’. NeuroReport, 9(17), 3809–3813.

    PubMed  CAS  Google Scholar 

  • Winkler, I., & Schröger, E. (1995). Neural representation for the temporal structure of sound patterns. NeuroReport, 6(4), 690–694.

    PubMed  CAS  Google Scholar 

  • Winkler, I., Karmos, G., & Näätänen, R. (1996). Adaptive modeling of the unattended acoustic environment reflected in the mismatch negativity event-related potential. Brain Research, 742(1–2), 239–252.

    PubMed  CAS  Google Scholar 

  • Winkler, I., Teder-Salejarvi, W. A., Horváth, J., Näätänen, R., & Sussman, E. (2003a). Human auditory cortex tracks task-irrelevant sound sources. NeuroReport, 14(16), 2053–2056.

    PubMed  Google Scholar 

  • Winkler, I., Sussman, E., Tervaniemi, M., Horváth, J., Ritter, W., & Näätänen, R. (2003b). Preattentive auditory context effects. Cognitive. Affective, and Behavioral Neurosciences, 3(1), 57–77.

    Google Scholar 

  • Winkler, I., Kushnerenko, E., Horváth, J., Ceponiene, R., Fellman, V., Huotilainen, M., et al. (2003c). Newborn infants can organize the auditory world. The Proceedings of the National Academy of Sciences of the USA, 100(20), 11812–11815.

    CAS  Google Scholar 

  • Winkler, I., Czigler, I., Sussman, E., Horváth, J., & Balazs, L. (2005a). Preattentive binding of auditory and visual stimulus features. Journal of Cognitive Neuroscience, 17(2), 320–339.

    PubMed  Google Scholar 

  • Winkler, I., Takegata, R., & Sussman, E. (2005b). Event-related brain potentials reveal multiple stages in the perceptual organization of sound. Cognitive Brain Research, 25(1), 291–299.

    PubMed  Google Scholar 

  • Winkler, I., van Zuijen, T. L., Sussman, E., Horváth, J., & Näätänen, R. (2006). Object representation in the human auditory system. European Journal of Neuroscience, 24(2), 625–634.

    PubMed  Google Scholar 

  • Winkler, I., Denham, S. L., & Nelken, I. (2009a). Modeling the auditory scene: Predictive regularity representations and perceptual objects. Trends in Cognitive Sciences, 13(12), 532–540.

    PubMed  Google Scholar 

  • Winkler, I., Horváth, J., Weisz, J., & Trejo, L. J. (2009b). Deviance detection in congruent audiovisual speech: Evidence for implicit integrated audiovisual memory representations. Biological Psychology, 82(3), 281–292.

    PubMed  Google Scholar 

  • Yuval-Greenberg, S., & Deouell, L. Y. (2007). What you see is not (always) what you hear: Induced gamma band responses reflect cross-modal interactions in familiar object recognition. Journal of Neuroscience, 27(5), 1090–1096.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Stephen Arnott, Joel Snyder, and Alexandra Bendixen for their suggestions on an earlier version of this chapter, as well as Patricia Van Roon and Filomeno Cortese for their help in preparing the manuscript and illustrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Alain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Alain, C., Winkler, I. (2012). Recording Event-Related Brain Potentials: Application to Study Auditory Perception. In: Poeppel, D., Overath, T., Popper, A., Fay, R. (eds) The Human Auditory Cortex. Springer Handbook of Auditory Research, vol 43. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2314-0_4

Download citation

Publish with us

Policies and ethics