Advertisement

Multisensory Role of Human Auditory Cortex

  • Virginie van Wassenhove
  • Charles E. Schroeder
Chapter
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 43)

Abstract

Multisensory research is at an early stage of inquiry and provides fascinating evidence questioning the long held view that sensory modalities are independent analytical pathways. Auditory cortex is a prime example of cortical area that can often be modulated by inputs coming from different sensory and motor modalities.

Keywords

Auditory Cortex Multisensory Integration Visual Speech Primary Auditory Cortex Auditory Speech 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alais, D., & Burr, D. (2003). The “flash-lag” effect occurs in audition and cross-modally. Current Biology, 13(1), 59–63.PubMedGoogle Scholar
  2. Alsius, A., Navarra, J., Campbell, R., & Soto-Faraco, S. (2005). Audiovisual integration of speech falters under high attention demands. Current Biology, 15(9), 839–843.PubMedGoogle Scholar
  3. Arnal, L. H., Morillon, B., Kell, C. A., & Giraud, A.-L. (2009). Dual neural routing of visual facilitation in speech processing. Journal of Neuroscience, 29(43), 13445–13453.PubMedGoogle Scholar
  4. Arnal, L. H., Wyart, V., & Giraud, A.-L. (2011). Transitions in neural oscillations reflect prediction errors generated in audiovisual speech. Nature Neuroscience, 14(6), 797–801.PubMedGoogle Scholar
  5. Barutchu, A., Crewther, S. G., Kiely, P., Murphy, M. J., & Crewther, D. P. (2008). When /b/ill with /g/ill becomes /d/ill: Evidence for a lexical effect in audiovisual speech perception. European Journal of Cognitive Psychology, 20(1), 1–11.Google Scholar
  6. Benevento, L. A., Fallon, J., Davis, B. J., & Rezak, M. (1977). Auditory-visual interaction in single cells in the cortex of the superior temporal sulcus and the orbital frontal cortex of the macaque monkey. Experimental Neurology, 57(3), 849–872.PubMedGoogle Scholar
  7. Bernstein, L. E., Auer, E. T. J., Moore, J. K., Ponton, C. W., Don, M., & Singh, M. (2002). Visual speech perception without primary auditory cortex activation. NeuroReport, 13(3), 311–315.PubMedGoogle Scholar
  8. Bertelson, P., & Radeau, M. (1981). Cross-modal bias and perceptual fusion with auditory-visual spatial discordance. Attention, Perception, & Psychophysics, 29(6), 578–584.Google Scholar
  9. Bertelson, P., Vroomen, J., De Gelder, B., & Driver, J. (2000). The ventriloquist effect does not depend on the direction of deliberate visual attention. Attention, Perception, & Psychophysics, 62(2), 321–332.Google Scholar
  10. Besle, J., Fort, A., Delpuech, C., & Giard, M.-H. (2004). Bimodal speech: Early suppressive visual effects in human auditory cortex. European Journal of Neuroscience, 20(8), 2225–2234.PubMedGoogle Scholar
  11. Besle, J., Fischer, C., Bidet-Caulet, A., Lecaignard, F., Bertrand, O., & Giard, M.-H. (2008). Visual activation and audiovisual interactions in the auditory cortex during speech perception: Intracranial recordings in humans. Journal of Neuroscience, 28(52), 14301–14310.PubMedGoogle Scholar
  12. Besle, J., Bertrand, O., & Giard, M.-H. (2009). Electrophysiological (EEG, sEEG, MEG) evidence for multiple audiovisual interactions in the human auditory cortex. Hearing Research, 258(1–2), 143–151.PubMedGoogle Scholar
  13. Binnie, C. A., Montgomery, A. A., & Jackson, P. L. (1974). Auditory and visual contributions to the perception of consonants. Journal of Speech and Hearing Research, 17(4), 619–630.PubMedGoogle Scholar
  14. Bischoff, M., Walter, B., Blecker, C. R., Morgen, K., Vaitl, D., & Sammer, G. (2007). Utilizing the ventriloquism-effect to investigate audio-visual binding. Neuropsychologia, 45(3), 578–586.PubMedGoogle Scholar
  15. Bizley, J. K., Nodal, F. R., Bajo, V. M., Nelken, I., & King, A. J. (2007). Physiological and anatomical evidence for multisensory interactions in auditory cortex. Cerebral Cortex, 17(9), 2172–2189.PubMedGoogle Scholar
  16. Bonath, B., Noesselt, T., Martinez, A., Mishra, J., Schwiecker, K., Heinze, H.-J., & Hillyard, S. A. (2007). Neural basis of the ventriloquist illusion. Current Biology, 17(19), 1697–1703.PubMedGoogle Scholar
  17. Braida, L. D. (1991). Crossmodal integration in the identification of consonant segments. The Quarterly Journal of Experimental Psychology Section A, 43(3), 647–677.Google Scholar
  18. Brancazio, L. (2004). Lexical influences in audiovisual speech perception. Journal of Experimental Psychology: Human Perception and Performance, 30(3), 445–463.PubMedGoogle Scholar
  19. Bristow, D., Dehaene-Lambertz, G., Mattout, J., Soares, C., Gliga, T., Baillet, S., & Mangin, J.-F. (2008). Hearing faces: How the infant brain matches the face it sees with the speech it hears. Journal of Cognitive Neuroscience, 21(5), 905–921.Google Scholar
  20. Brosch, M., Selezneva, E., & Scheich, H. (2005). Nonauditory events of a behavioral procedure activate auditory cortex of highly trained monkeys. Journal of Neuroscience, 25(29), 6797–6806.PubMedGoogle Scholar
  21. Budinger, E., Heil, P., Hess, A., & Scheich, H. (2006). Multisensory processing via early cortical stages: Connections of the primary auditory cortical field with other sensory systems. Neuroscience, 143(4), 1065–1083.PubMedGoogle Scholar
  22. Burnham, D., & Dodd, B. (2004). Auditory–visual speech integration by prelinguistic infants: Perception of an emergent consonant in the McGurk effect. Developmental Psychobiology, 45(4), 204–220.PubMedGoogle Scholar
  23. Burton, H., & Sinclair, R. J. (1996). Somatosensory cortex and tactile perceptions. In L. Kruger (Ed.), Pain and touch (pp. 105–177). San Diego, CA.Google Scholar
  24. Bushara, K. O., Grafman, J., & Hallett, M. (2001). Neural correlates of auditory–visual stimulus onset asynchrony detection. Journal of Neuroscience, 21(1), 300–304.PubMedGoogle Scholar
  25. Caclin, A., Soto-Faraco, S., Kingstone, A., & Spence, C. (2002). Tactile “capture” of audition. Attention, Perception, & Psychophysics, 64(4), 616–630.Google Scholar
  26. Caetano, G., & Jousmäki, V. (2006). Evidence of vibrotactile input to human auditory cortex. NeuroImage, 29(1), 15–28.PubMedGoogle Scholar
  27. Callan, D. E., Callan, A. M., Kroos, C., & Vatikiotis-Bateson, E. (2001). Multimodal contribution to speech perception revealed by independent component analysis: A single-sweep EEG case study. Cognitive Brain Research, 10(3), 349–353.PubMedGoogle Scholar
  28. Callan, D. E., Jones, J. A., Munhall, K., Callan, A. M., Kroos, C., & Vatikiotis-Bateson, E. (2003). Neural processes underlying perceptual enhancement by visual speech gestures. NeuroReport, 114(17), 2213–2218.Google Scholar
  29. Callan, D. E., Jones, J. A., Munhall, K., Kroos, C., Callan, A. M., & Vatikiotis-Bateson, E. (2004). Multisensory integration sites identified by perception of spatial wavelet filtered visual speech gesture information. Journal of Cognitive Neuroscience, 16(5), 805–816.PubMedGoogle Scholar
  30. Calvert, G. A., & Campbell, R. (2003). Reading speech from still and moving faces: The neural substrates of visible speech. Journal of Cognitive Neuroscience, 15(1), 57–70.PubMedGoogle Scholar
  31. Calvert, G. A., Bullmore, E. T., Brammer, M. J., Campbell, R., Williams, S. C. R., McGuire, P. K., et al. (1997). Activation of auditory cortex during silent lipreading. Science, 276(5312), 593–596.PubMedGoogle Scholar
  32. Calvert, G. A., Brammer, M. J., Bullmore, E. T., Campbell, R., Iversen, S. D., & David, A. S. (1999). Response amplification in sensory-specific cortices during crossmodal binding. NeuroReport, 10(12), 2619–2623.Google Scholar
  33. Calvert, G. A., Campbell, R., & Brammer, M. J. (2000). Evidence from functional magnetic resonance imaging of crossmodal binding in the human heteromodal cortex. Current Biology, 10(11), 649–657.PubMedGoogle Scholar
  34. Calvert, G. A., Hansen, P. C., Iversen, S. D., & Brammer, M. J. (2001). Detection of audio-visual integration sites in humans by application of electrophysiological criteria to the BOLD effect. NeuroImage, 14(2), 427–438.PubMedGoogle Scholar
  35. Campbell, C. S., & Massaro, D. W. (1997). Perception of visible speech: Influence of spatial quantization. Perception, 26(5), 627–644.PubMedGoogle Scholar
  36. Campbell, R. (2008). The processing of audio-visual speech: Empirical and neural bases. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1493), 1001–1010.Google Scholar
  37. Canon, L. K. (1970). Intermodality inconsistency of input and directed attention as determinants of the nature of adaptation. Journal of Experimental Psychology, 84(1), 141–147.PubMedGoogle Scholar
  38. Capek, C. M., Bavelier, D., Corina, D., Newman, A. J., Jezzard, P., & Neville, H. J. (2004). The cortical organization of audio-visual sentence comprehension: An fMRI study at 4 Tesla. Cognitive Brain Research, 20(2), 111–119.PubMedGoogle Scholar
  39. Cappe, C., Morel, A., Barone, P., & Rouiller, E. M. (2009). The thalamocortical projection systems in primate: An anatomical support for multisensory and sensorimotor interplay. Cerebral Cortex, 19(9), 2025–2037.PubMedGoogle Scholar
  40. Celesia, G. G. (1968). Auditory evoked responses: Intracranial and extracranial average evoked responses. Archives of Neurology, 19(4), 430–437.PubMedGoogle Scholar
  41. Chandrasekaran, C., Trubanova, A., Stillittano, S., Caplier, A., & Ghazanfar, A. A. (2009). The natural statistics of audiovisual speech. PLoS Computational Biology, 5(7), e1000436.PubMedGoogle Scholar
  42. Chen, C.-M., Lakatos, P., Shah, A. S., Mehta, A. D., Givre, S. J., Javitt, D. C., & Schroeder, C. E. (2007). Functional anatomy and interaction of fast and slow visual pathways in macaque monkeys. Cerebral Cortex, 17(7), 1561–1569.PubMedGoogle Scholar
  43. Colin, C., Radeau, M., Soquet, A., Demolin, D., Colin, F., & Deltenre, P. (2002). Mismatch negativity evoked by the McGurk–MacDonald effect: A phonetic representation within short-term memory. Clinical Neurophysiology, 113(4), 495–506.PubMedGoogle Scholar
  44. Colin, C., Radeau, M., Soquet, A., & Deltenre, P. (2004). Generalization of the generation of an MMN by illusory McGurk percepts: Voiceless consonants. Clinical Neurophysiology, 115(9), 1989–2000.PubMedGoogle Scholar
  45. Conrey, B., & Pisoni, D. B. (2006). Auditory-visual speech perception and synchrony detection for speech and nonspeech signals. Journal of the Acoustical Society of America, 119(6), 4065.PubMedGoogle Scholar
  46. Dehaene-Lambertz, G., Dehaene, S., & Hertz-Pannier, L. (2002). Functional neuroimaging of speech perception in infants. Science, 298(5600), 2013–2015.PubMedGoogle Scholar
  47. Dixon, N. F., & Spitz, L. (1980). The detection of auditory visual desynchrony. Perception, 9(6), 719–721.PubMedGoogle Scholar
  48. Dodd, B. (1979). Lip reading in infants: Attention to speech presented in- and out-of-synchrony. Cognitive Psychology, 11(4), 478–484.PubMedGoogle Scholar
  49. Doesburg, S., Emberson, L., Rahi, A., Cameron, D., & Ward, L. (2008). Asynchrony from synchrony: Long-range gamma-band neural synchrony accompanies perception of audiovisual speech asynchrony. Experimental Brain Research, 185(1), 11–20.Google Scholar
  50. Driver, J., & Spence, C. (1998a). Cross–modal links in spatial attention. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 353(1373), 1319–1331.PubMedGoogle Scholar
  51. Driver, J., & Spence, C. (1998b). Crossmodal attention. Current Opinion in Neurobiology, 8(2), 245–253.PubMedGoogle Scholar
  52. Driver, J., & Spence, C. (2004). Crossmodal spatial attention: Evidence from human performance. In C. Spence & J. Diver (Eds.), Crossmodal space and crossmodal attention (p. 179). Oxford: Oxford University Press.Google Scholar
  53. Dubois, J., Dehaene-Lambertz, G., Perrin, M., Mangin, J.-F., Cointepas, Y., Duchesnay, E., et al. (2008). Asynchrony of the early maturation of white matter bundles in healthy infants: Quantitative landmarks revealed noninvasively by diffusion tensor imaging. Human Brain Mapping, 29(1), 14–27.PubMedGoogle Scholar
  54. Erber, N. P. (1969). Interaction of audition and vision in the recognition of oral speech stimuli. Journal of Speech and Hearing Research, 12(2), 423–425.PubMedGoogle Scholar
  55. Erber, N. P. (1971). Effects of distance on the visual reception of speech. Journal of Speech and Hearing Research, 14(4), 848–857.PubMedGoogle Scholar
  56. Erber, N. P. (1979). Auditory-visual perception of speech with reduced optical clarity. Journal of Speech & Hearing Research, 22(2), 212–223.Google Scholar
  57. Falchier, A., Schroeder, C. E., Hackett, T. A., Lakatos, P., Nascimento-Silva, S., Ulbert, I., et al. (2010). Projection from visual areas V2 and prostriata to caudal auditory cortex in the monkey. Cerebral Cortex, 20(7), 1529–1538.PubMedGoogle Scholar
  58. Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1(1), 1–47.PubMedGoogle Scholar
  59. Fendrich, R., & Corballis, P. (2001). The temporal cross-capture of audition and vision. Attention, Perception, & Psychophysics, 63(4), 719–725.Google Scholar
  60. Fort, A., & Giard, M.-H. (2004). Multiple electrophysiological mechanisms of audiovisual integration in human perception. In G. Calvert, C. Spence, & B. E. Stein (Eds.), The handbook of multisensory processes. Cambridge, MA: MIT Press.Google Scholar
  61. Foxe, J. J., Morocz, I. A., Murray, M. M., Higgins, B. A., Javitt, D. C., & Schroeder, C. E. (2000). Multisensory auditory–somatosensory interactions in early cortical processing revealed by high-density electrical mapping. Cognitive Brain Research, 10(1–2), 77–83.PubMedGoogle Scholar
  62. Foxe, J. J., Wylie, G. R., Martinez, A., Schroeder, C. E., Javitt, D. C., Guilfoyle, D., et al. (2002). Auditory-somatosensory multisensory processing in auditory association cortex: An fMRI study. Journal of Neurophysiology, 88(1), 540–543.PubMedGoogle Scholar
  63. Froyen, D., Van Atteveldt, N., Bonte, M., & Blomert, L. (2008). Cross-modal enhancement of the MMN to speech-sounds indicates early and automatic integration of letters and speech-sounds. Neuroscience Letters, 430(1), 23–28.PubMedGoogle Scholar
  64. Fu, K.-M. G., Johnston, T. A., Shah, A. S., Arnold, L., Smiley, J., Hackett, T. A., et al. (2003). Auditory cortical neurons respond to somatosensory stimulation. Journal of Neuroscience, 23(20), 7510–7515.PubMedGoogle Scholar
  65. Gebhard, J. W., & Mowbray, G. H. (1959). On Discriminating the rate of visual flicker and auditory flutter. The American Journal of Psychology, 72(4), 521–529.PubMedGoogle Scholar
  66. Giard, M. H., & Peronnet, F. (1999). Auditory-visual integration during multimodal object recognition in humans: A behavioral and electrophysiological study. Journal of Cognitive Neuroscience, 11(5), 473–490.PubMedGoogle Scholar
  67. Givre, S.J., Schroeder, C. E., & Arezzo, J. C. (1994). Contribution of extrastriate area V4 to the surface-recorded flash VEP in the awake macaque. Vision Research, 34(4), 415–428.PubMedGoogle Scholar
  68. Grant, K., & Seitz, P. (1998). Measures of auditory–visual integration in nonsense syllables and sentences. Journal of the Acoustical Society of America, 104(4), 2438.PubMedGoogle Scholar
  69. Grant, K., & Seitz, P. (2000). The use of visible speech cues for improving auditory detection of spoken sentences. Journal of the Acoustical Society of America, 108(3), 1197.PubMedGoogle Scholar
  70. Grant, K., & Walden, B. (1996). Evaluating the articulation index for auditory–visual consonant recognition. Journal of the Acoustical Society of America, 100(4), 2415.PubMedGoogle Scholar
  71. Grant, K., Walden, B., & Seitz, P. (1998). Auditory-visual speech recognition by hearing-impaired subjects: Consonant recognition, sentence recognition, and auditory-visual integration. Journal of the Acoustical Society of America, 103(5), 2677.PubMedGoogle Scholar
  72. Green, K. P. (1998). The use of auditory and visual information during phonetic processing: implications for theories of speech perception. In R. Campbell, B. Dodd, D. Burnham (Eds.), Hearing by eye II: Advances in the psychology of speechreading and auditory-visual speech. East Sussex, UK: Psychology PressGoogle Scholar
  73. Guest, S., Catmur, C., Lloyd, D., & Spence, C. (2002). Audiotactile interactions in roughness perception. Experimental Brain Research, 146(2), 161–171.Google Scholar
  74. Hackett, T. A., Stepniewska, I., & Kaas, J. H. (1998). Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys. The Journal of Comparative Neurology, 394(4), 475–495.PubMedGoogle Scholar
  75. Hackett, T. A., Smiley, J. F., Ulbert, I., Karmos, G., Lakatos, P., de la Mothe, L. A., & Schroeder, C. E. (2007a). Sources of somatosensory input to the caudal belt areas of auditory cortex. Perception, 36(10), 1419–1430.PubMedGoogle Scholar
  76. Hackett, T. A., De La Mothe, L. A., Ulbert, I., Karmos, G., Smiley, J., & Schroeder, C. E. (2007b). Multisensory convergence in auditory cortex, II. Thalamocortical connections of the caudal superior temporal plane. The Journal of Comparative Neurology, 502(6), 924–952.PubMedGoogle Scholar
  77. Halle, M., & Stevens, K. N. (1967). Remarks on analysis by synthesis and distinctive features. In W. Wathem-Dunn (ed.), Models for the perception of speech and visual form. Cambridge, MA: MIT Press.Google Scholar
  78. Haxby, J., Horwitz, B., Ungerleider, L., Maisog, J., Pietrini, P., & Grady, C. (1994). The functional organization of human extrastriate cortex: A PET-rCBF study of selective attention to faces and locations. Journal of Neuroscience, 14(11), 6336–6353.PubMedGoogle Scholar
  79. Hine, T. J., White, A. M., & Chappell, M. (2003). Is there an auditory−visual flash-lag effect? Clinical & Experimental Ophthalmology, 31(3), 254–257.Google Scholar
  80. Howard, I. P., & Templeton, W. B. (1966). Human spatial orientation. Oxford : John Wiley & Sons.Google Scholar
  81. Jääskeläinen, I. P., Ojanen, V., Ahveninen, J., Auranen, T., Levänen, S., Möttönen, R., et al. (2004). Adaptation of neuromagnetic N1 responses to phonetic stimuli by visual speech in humans. NeuroReport, 15(18).Google Scholar
  82. Jancke, L., Mirzazade, S., & Shah, N. J. (1999) Attention modulates activity in the primary and secondary auditory cortex: A functional magnetic resonance imaging study in human subjects. Neuroscience Letters, 266, 125–128.PubMedGoogle Scholar
  83. Jones, J. A., & Callan, D. E. (2003). Brain activity during audiovisual speech perception: An fMRI study of the McGurk effect. NeuroReport, 14(8), 1129–1133.Google Scholar
  84. Jordan, T. R., & Sergeant, P. (2000). Effects of distance on visual and audiovisual speech recognition. Language and Speech, 43(1), 107–124.Google Scholar
  85. Jousmäki, V, & Hari, R. (1998). Parchment-skin illusion: Sound-biased touch. Current Biology, 8(6), R190–R191.PubMedGoogle Scholar
  86. Kaiser, J., Hertrich, I., Ackermann, H., Mathiak, K., & Lutzenberger, W. (2005). Hearing lips: Gamma-band activity during audiovisual speech perception. Cerebral Cortex, 15(5), 646–653.PubMedGoogle Scholar
  87. Kajikawa, Y., de La Mothe, L., Blumell, S., & Hackett, T. A. (2005). A comparison of neuron response properties in areas A1 and CM of the marmoset monkey auditory cortex: tones and broadband noise. Journal of Neurophysiology, 93(1), 22–34.PubMedGoogle Scholar
  88. Kawashima, R., O’Sullivan, B. T., & Roland, P. E. (1995). Positron-emission tomography studies of cross-modality inhibition in selective attentional tasks: Closing the “mind’s eye.” Proceedings of the National Academy of Sciences of the USA, 92(13), 5969–5972.PubMedGoogle Scholar
  89. Kayser, C., Petkov, C. I., Augath, M., & Logothetis, N. K. (2005). Integration of touch and sound in auditory cortex. Neuron, 48(2), 373–384.PubMedGoogle Scholar
  90. Kayser, C., Petkov, C. I., Augath, M., & Logothetis, N. K. (2007). Functional imaging reveals visual modulation of specific fields in auditory cortex. Journal of Neuroscience, 27(8), 1824–1835.PubMedGoogle Scholar
  91. Kayser, C., Petkov, C. I., & Logothetis, N. K. (2008). Visual modulation of neurons in auditory cortex. Cerebral Cortex, 18(7), 1560–1574.PubMedGoogle Scholar
  92. Klucharev, V., Möttönen, R., & Sams, M. (2003). Electrophysiological indicators of phonetic and non-phonetic multisensory interactions during audiovisual speech perception. Cognitive Brain Research, 18(1), 65–75.PubMedGoogle Scholar
  93. Kosaki, H., Hashikawa, T., He, J., & Jones, E. G. (1997). Tonotopic organization of auditory cortical fields delineated by parvalbumin immunoreactivity in macaque monkeys. The Journal of Comparative Neurology, 386(2), 304–316.PubMedGoogle Scholar
  94. Krubitzer, L., Clarey, J., Tweedale, R., Elston, G., & Calford, M. (1995). A redefinition of somatosensory areas in the lateral sulcus of macaque monkeys. Journal of Neuroscience, 15(5), 3821–3839.PubMedGoogle Scholar
  95. Kuhl, P., & Meltzoff, A. (1982). The bimodal perception of speech in infancy. Science, 218(4577), 1138–1141.PubMedGoogle Scholar
  96. Lakatos, P., Shah, A. S., Knuth, K. H., Ulbert, I., Karmos, G., & Schroeder, C. E. (2005). An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. Journal of Neurophysiology, 94(3), 1904–1911.PubMedGoogle Scholar
  97. Lakatos, P., Chen, C.-M., O’Connell, M. N., Mills, A., & Schroeder, C. E. (2007). Neuronal oscillations and multisensory interaction in primary auditory cortex. Neuron, 53(2), 279–292.PubMedGoogle Scholar
  98. Leinonen, L., Hyvärinen, J., & Sovijärvi, A. R. A. (1980). Functional properties of neurons in the temporo-parietal association cortex of awake monkey. Experimental Brain Research, 39(2), 203–215.Google Scholar
  99. Levänen, S., Jousmäki, V., & Hari, R. (1998). Vibration-induced auditory-cortex activation in a congenitally deaf adult. Current Biology, 8(15), 869–872.PubMedGoogle Scholar
  100. Lewald, J., Ehrenstein, W. H., & Guski, R. (2001). Spatio-temporal constraints for auditory–visual integration. Behavioural Brain Research, 121(1–2), 69–79.PubMedGoogle Scholar
  101. Liberman, A. M., & Mattingly, I. G. (1985). The motor theory of speech perception revised. Cognition, 21(1), 1–36.PubMedGoogle Scholar
  102. Liberman, A. M., Cooper, F. S., Shankweiler, D. P., & Studdert-Kennedy, M. (1967). Perception of the speech code. Psychological Review, 74(6), 431–461.PubMedGoogle Scholar
  103. Liégeois-Chauvel, C., Musolino, A., & Chauvel, P. (1991). Localization of the primary auditory area in man. Brain, 114A(1), 139–153.Google Scholar
  104. Lipton, M. L., Fu, K.-M. G., Branch, C. A., & Schroeder, C. E. (2006). Ipsilateral hand input to area 3b revealed by converging hemodynamic and electrophysiological analyses in macaque monkeys. Journal of Neuroscience, 26(1), 180–185.PubMedGoogle Scholar
  105. Luo, H., Liu, Z., & Poeppel, D. (2010). Auditory cortex tracks both auditory and visual stimulus dynamics using low-frequency neuronal phase modulation. PLoS Biology, 8(8), e1000445.PubMedGoogle Scholar
  106. Lütkenhöner, B., Lammertmann, C., Simões, C., & Hari, R. (2002). Magnetoencephalographic correlates of audiotactile interaction. NeuroImage, 15(3), 509–522.PubMedGoogle Scholar
  107. Macaluso, E., George, N., Dolan, R., Spence, C., & Driver, J. (2004). Spatial and temporal factors during processing of audiovisual speech: A PET study. NeuroImage, 21(2), 725–732.PubMedGoogle Scholar
  108. MacDonald, J, Andersen, S., & Bachmann, T. (2000). Hearing by eye: How much spatial degradation can be tolerated? Perception, 29(10), 1155–1168.PubMedGoogle Scholar
  109. MacSweeney, M., Amaro, E., Calvert, G. A., Campbell, R., David, A. S., McGuire, P., et al. (2000). Silent speechreading in the absence of scanner noise: An event-related fMRI study. NeuroReport, 11(8).Google Scholar
  110. Martuzzi, R., Murray, M. M., Michel, C. M., Thiran, J.-P., Maeder, P. P., Clarke, S., & Meuli, R. A. (2007). Multisensory interactions within human primary cortices revealed by BOLD dynamics. Cerebral Cortex, 17(7), 1672–1679.PubMedGoogle Scholar
  111. Massaro, D. W. (1987). Speech perception by ear and eye: A paradigm for psychology inquiry. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  112. Massaro, D. W. (1998). Perceiving talking faces. Cambridge, MA: MIT Press.Google Scholar
  113. Massaro, D., Cohen, M., & Smeele, P. (1996). Perception of asynchronous and conflicting visual and auditory speech. Journal of the Acoustical Society of America, 100(3), 1777.PubMedGoogle Scholar
  114. Maunsell, J. H., & Gibson, J. R. (1992). Visual response latencies in striate cortex of the macaque monkey. Journal of Neurophysiology, 68(4), 1332–1344.PubMedGoogle Scholar
  115. McDonald, J. J., & Ward, L. M. (2000). Involuntary listening aids seeing: Evidence from human electrophysiology. Psychological Science, 11(2), 167–171.PubMedGoogle Scholar
  116. McGrath, M., & Summerfield, Q. (1985). Intermodal timing relations and audio–visual speech recognition by normal-hearing adults. Journal of the Acoustical Society of America, 77(2), 678–685.PubMedGoogle Scholar
  117. McGurk, H., & MacDonald, J. (1976). Hearing lips and seeing voices. Nature, 264(5588), 746–748.PubMedGoogle Scholar
  118. Mehta, A. D., Ulbert, I., & Schroeder, C. E. (2000a). Intermodal selective attention in monkeys. I: Distribution and timing of effects across visual areas. Cerebral Cortex, 10(4).Google Scholar
  119. Mehta, A. D., Ulbert, I., & Schroeder, C. E. (2000b). Intermodal selective attention in monkeys. II: Physiological mechanisms of modulation. Cerebral Cortex, 10(4), 359–370.PubMedGoogle Scholar
  120. Meredith, M., Nemitz, J., & Stein, B. (1987). Determinants of multisensory integration in superior colliculus neurons. I. Temporal factors. Journal of Neuroscience, 7(10), 3215–3229.PubMedGoogle Scholar
  121. Miller, L. M., & D’Esposito, M. (2005). Perceptual fusion and stimulus coincidence in the cross-modal integration of speech. Journal of Neuroscience, 25(25), 5884–5893.PubMedGoogle Scholar
  122. Molholm, S., Ritter, W., Murray, M. M., Javitt, D. C., Schroeder, C. E., & Foxe, J. J. (2002). Multisensory auditory–visual interactions during early sensory processing in humans: A high-density electrical mapping study. Cognitive Brain Research, 14(1), 115–128.PubMedGoogle Scholar
  123. Möttönen, R., Krause, C. M., Tiippana, K., & Sams, M. (2002). Processing of changes in visual speech in the human auditory cortex. Cognitive Brain Research, 13(3), 417–425.PubMedGoogle Scholar
  124. Möttönen, R., Schürmann, M., & Sams, M. (2004). Time course of multisensory interactions during audiovisual speech perception in humans: A magnetoencephalographic study. Neuroscience Letters, 363(2), 112–115.PubMedGoogle Scholar
  125. Munhall, K., Gribble, P., Sacco, L., & Ward, M. (1996). Temporal constraints on the McGurk effect. Attention, Perception, & Psychophysics, 58(3), 351–362.Google Scholar
  126. Munhall, K., Kroos, C., Jozan, G., & Vatikiotis-Bateson, E. (2004). Spatial frequency requirements for audiovisual speech perception. Attention, Perception, & Psychophysics, 66(4), 574–583.Google Scholar
  127. Munhall, K. G., ten Hove, M. W., Brammer, M., & Paré, M. (2009). Audiovisual integration of speech in a bistable illusion. Current Biology, 19(9), 735–739.PubMedGoogle Scholar
  128. Murray, M. M., Molholm, S., Michel, C. M., Heslenfeld, D. J., Ritter, W., Javitt, D. C., et al. (2005). Grabbing your ear: Rapid auditory–somatosensory multisensory interactions in low-level sensory cortices are not constrained by stimulus alignment. Cerebral Cortex, 15(7), 963–974.PubMedGoogle Scholar
  129. Musacchia G., & Schroeder C. E. (2009) Neuronal mechanisms, response dynamics and perceptual functions of multisensory interactions in auditory cortex. Hearing Research, 258, 72–79.PubMedGoogle Scholar
  130. Näätänen, R. (1995). The mismatch negativity: A powerful tool for cognitive neuroscience. Ear and Hearing, 16(1).Google Scholar
  131. Nijhawan, R. (1994). Motion extrapolation in catching. Nature, 370(6487), 256–257.PubMedGoogle Scholar
  132. Noesselt, T., Rieger, J. W., Schoenfeld, M. A., Kanowski, M., Hinrichs, H., Heinze, H.-J., & Driver, J. (2007). Audiovisual temporal correspondence modulates human multisensory superior temporal sulcus plus primary sensory cortices. Journal of Neuroscience, 27(42), 11431–11441.PubMedGoogle Scholar
  133. Noesselt, T., Bonath, B., Boehler, C. N., Schoenfeld, M. A., & Heinze, H.-J. (2008). On perceived synchrony—neural dynamics of audiovisual illusions and suppressions. Brain Research, 1220(0), 132–141.PubMedGoogle Scholar
  134. Ogilvie, J. C. (1956). Effect of auditory flutter on the visual critical flicker frequency. Canadian Journal of Psychology, 10(2), 61–68.PubMedGoogle Scholar
  135. Olson, I. R., Gatenby, J. C., & Gore, J. C. (2002). A comparison of bound and unbound audio–visual information processing in the human cerebral cortex. Cognitive Brain Research, 14(1), 129–138.PubMedGoogle Scholar
  136. Pallas, S., Roe, A., & Sur, M. (1990). Visual projections induced into the auditory pathway of ferrets. 1. Novel inputs to primary auditory cortex (AI) form the LP/pulvinar complex and the topography of the MGN-AI projection. Journal of Comparative Neurology, 298(1), 50–68.PubMedGoogle Scholar
  137. Pandey, P. C., Kunov, H., & Abel, S. M. (1986). Disruptive effects of auditory signal delay on speech perception with lipreading. Journal of Auditory Research, 26(1), 27–41.PubMedGoogle Scholar
  138. Passamonti, C., Frissen, I., & Làdavas, E. (2009). Visual recalibration of auditory spatial perception: Two separate neural circuits for perceptual learning. European Journal of Neuroscience, 30(6), 1141–1150.PubMedGoogle Scholar
  139. Patterson, M. L., & Werker, J. F. (2003). Two-month-old infants match phonetic information in lips and voice. Developmental Science, 6(2), 191–196.Google Scholar
  140. Paulesu, E., Perani, D., Blasi, V., Silani, G., Borghese, N. A., De Giovanni, U., et al. (2003). A functional-anatomical model for lipreading. Journal of Neurophysiology, 90(3), 2005–2013.PubMedGoogle Scholar
  141. Pekkola, J., Ojanen, V., Autti, T., Jääskeläinen, I. P., Möttönen, R., Tarkiainen, A., & Sams, M. (2005). Primary auditory cortex activation by visual speech: An fMRI study at 3 T. NeuroReport, 16(2).Google Scholar
  142. Peterson, N. N., Schroeder, C. E., & Arezzo, J. C. (1995). Neural generators of early cortical somatosensory evoked potentials in the awake monkey. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 96(3), 248–260.Google Scholar
  143. Pick, H., Warren, D., & Hay, J. (1969). Sensory conflict in judgments of spatial direction. Attention, Perception, & Psychophysics, 6(4), 203–205.Google Scholar
  144. Pilling, M. (2009). Auditory event-related potentials (ERPs) in audiovisual speech perception. Journal of Speech, Language, and Hearing Research, 52(4), 1073–1081.Google Scholar
  145. Poeppel, D., Idsardi, W. J., & van Wassenhove, V. (2008). Speech perception at the interface of neurobiology and linguistics. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1493), 1071–1086.Google Scholar
  146. Radeau, M. (1974). Adaptation au déplacement prismatique sur la base d’une discordance entre la vision et l’audition. L’Année Psychologique, 23–33.Google Scholar
  147. Radeau, M., & Bertelson, P. (1987). Auditory-visual interaction and the timing of inputs. Psychological Research, 49(1), 17–22.PubMedGoogle Scholar
  148. Raij, T., Uutela, K., & Hari, R. (2000). Audiovisual integration of letters in the human brain. Neuron, 28(2), 617–625.PubMedGoogle Scholar
  149. Rauschecker, J. P., Tian, B., Pons, T., & Mishkin, M. (1997). Serial and parallel processing in rhesus monkey auditory cortex. The Journal of Comparative Neurology, 382(1), 89–103.PubMedGoogle Scholar
  150. Reale, R. A., Calvert, G. A., Thesen, T., Jenison, R. L., Kawasaki, H., Oya, H., et al. (2007). Auditory-visual processing represented in the human superior temporal gyrus. Neuroscience, 145(1), 162–184.PubMedGoogle Scholar
  151. Recanzone, G. H. (1998). Rapidly induced auditory plasticity: The ventriloquism aftereffect. Proceedings of the National Academy of Sciences of the USA, 95(3), 869–875.PubMedGoogle Scholar
  152. Recanzone, G. H. (2003). Auditory influences on visual temporal rate perception. Journal of Neurophysiology, 89(2), 1078–1093.PubMedGoogle Scholar
  153. Recanzone, G. H., Guard, D. C., & Phan, M. L. (2000). Frequency and intensity response properties of single neurons in the auditory cortex of the behaving macaque monkey. Journal of Neurophysiology, 83(4), 2315–2331.PubMedGoogle Scholar
  154. Reisberg, D., McLean, J., & Goldfield, A. (1987). Easy to hear but hard to understand: A lip-reading advantage with intact auditory stimuli. In B. Dodd & R. Campbell (Eds.), Hearing by eye: The psychology of lip-reading (pp. 97–113). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  155. Robinson, C. J., & Burton, H. (1980). Organization of somatosensory receptive fields in cortical areas 7b, retroinsula, postauditory and granular insula of M. fascicularis. Journal of Comparative Neurology, 192(1), 69–92.PubMedGoogle Scholar
  156. Rockland, K. S., & Pandya, D. N. (1979). Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Research, 179(1), 3–20.PubMedGoogle Scholar
  157. Roe, A., Pallas, S., Hahm, J., & Sur, M. (1990). A map of visual space induced in primary auditory cortex. Science, 250(4982), 818–820.PubMedGoogle Scholar
  158. Rosenblum, L., & Saldãna, H. M. (1996). An audiovisual test of kinematic primitives for visual speech perception. Journal of Experimental Psychology: Human Perception and Performance, 22(2), 318–331.PubMedGoogle Scholar
  159. Rosenblum, L., Schmuckler, M., & Johnson, J. (1997). The McGurk effect in infants. Attention, Perception, & Psychophysics, 59(3), 347–357.Google Scholar
  160. Rosenthal, O., Shimojo, S., & Shams, L. (2009). Sound-induced flash illusion is resistant to feedback training. Brain Topography, 21(3), 185–192.PubMedGoogle Scholar
  161. Ross, L. A., Saint-Amour, D., Leavitt, V. M., Javitt, D. C., & Foxe, J. J. (2007). Do you see what I am saying? Exploring visual enhancement of speech comprehension in noisy environments. Cerebral Cortex, 17(5), 1147–1153.PubMedGoogle Scholar
  162. Sams, M., Aulanko, R., Hämäläinen, M., Hari, R., Lounasmaa, O. V., Lu, S.-T., & Simola, J. (1991). Seeing speech: Visual information from lip movements modifies activity in the human auditory cortex. Neuroscience Letters, 127(1), 141–145.PubMedGoogle Scholar
  163. Sato, M., Baciu, M., Lœvenbruck, H., Schwartz, J.-L., Cathiard, M.-A., Segebarth, C., & Abry, C. (2004). Multistable representation of speech forms: A functional MRI study of verbal transformations. NeuroImage, 23(3), 1143–1151.PubMedGoogle Scholar
  164. Schmolesky, M. T., Wang, Y., Hanes, D. P., Thompson, K. G., Leutgeb, S., Schall, J. D., & Leventhal, A. G. (1998). Signal timing across the macaque visual system. Journal of Neurophysiology, 79(6), 3272–3278.PubMedGoogle Scholar
  165. Schorr, E. A., Fox, N. A., van Wassenhove, V., & Knudsen, E. I. (2005). Auditory-visual fusion in speech perception in children with cochlear implants. Proceedings of the National Academy of Sciences of the USA, 102(51), 18748–18750.PubMedGoogle Scholar
  166. Schroeder, C. E., & Foxe, J. J. (2002). The timing and laminar profile of converging inputs to multisensory areas of the macaque neocortex. Cognitive Brain Research, 14(1), 187–198.PubMedGoogle Scholar
  167. Schroeder, C. E., Seto, S., Arezzo, J. C., & Garraghty, P. E. (1995). Electrophysiological evidence for overlapping dominant and latent inputs to somatosensory cortex in squirrel monkeys. Journal of Neurophysiology, 74(2), 722–732.PubMedGoogle Scholar
  168. Schroeder, C. E., Seto, S., & Garraghty, P. E. (1997). Emergence of radial nerve dominance in median nerve cortex after median nerve transection in an adult squirrel monkey. Journal of Neurophysiology, 77(1), 522–526.PubMedGoogle Scholar
  169. Schroeder, C E, Mehta, A. D., & Givre, S. J. (1998). A spatiotemporal profile of visual system activation revealed by current source density analysis in the awake macaque. Cerebral Cortex, 8(7), 575–592.PubMedGoogle Scholar
  170. Schroeder, C.E., Lindsley, R. W., Specht, C., Marcovici, A., Smiley, J. F., & Javitt, D. C. (2001). Somatosensory input to auditory association cortex in the macaque monkey. Journal of Neurophysiology, 85(3), 1322–1327.PubMedGoogle Scholar
  171. Schroeder, C. E., Molhom, S., Lakatos, P., Ritter, W., & Foxe, J. J. (2004). Human–simian correspondence in the early cortical processing of multisensory cues. Cognitive Processing, 5(3), 140–151.Google Scholar
  172. Schroeder, C. E., Lakatos, P., Kajikawa, Y., Partan, S., & Puce, A. (2008). Neuronal oscillations and visual amplification of speech. Trends in Cognitive Sciences, 12(3), 106–113.PubMedGoogle Scholar
  173. Schürmann, M., Caetano, G., Hlushchuk, Y., Jousmäki, V., & Hari, R. (2006). Touch activates human auditory cortex. NeuroImage, 30(4), 1325–1331.PubMedGoogle Scholar
  174. Schwartz, J. L., Robert-Ribes, J., & Escudier, P. (1998). Ten years after Summerfield: A taxonomy of models for audio-visual fusion in speech perception. In R. Campbell, B. Dodd, & D. Burnham (Eds.), Hearing by eye II: Advances in the psychology of speechreading and auditory-visual speech (pp. 85–108). East Sussex, UK: Psychology Press.Google Scholar
  175. Sekiyama, K., Kanno, I., Miura, S., & Sugita, Y. (2003). Auditory-visual speech perception examined by fMRI and PET. Neuroscience Research, 47(3), 277–287.PubMedGoogle Scholar
  176. Shams, L., Kamitani, Y., & Shimojo, S. (2000). Illusions: What you see is what you hear. Nature, 408(6814), 788.PubMedGoogle Scholar
  177. Shams, L., Iwaki, S., Chawla, A., & Bhattacharya, J. (2005). Early modulation of visual cortex by sound: an MEG study. Neuroscience Letters, 378(2), 76–81.PubMedGoogle Scholar
  178. Shipley, T. (1964). Auditory flutter-driving of visual flicker. Science, 145(3638), 1328–1330.PubMedGoogle Scholar
  179. Skipper, J. I., van Wassenhove, V., Nusbaum, H. C., & Small, S. L. (2007). Hearing Lips and Seeing voices: How cortical areas supporting speech production mediate audiovisual speech perception. Cerebral Cortex, 17(10), 2387–2399.PubMedGoogle Scholar
  180. Smiley, J. F., Hackett, T. A., Ulbert, I., Karmas, G., Lakatos, P., Javitt, D. C., & Schroeder, C. E. (2007). Multisensory convergence in auditory cortex, I. Cortical connections of the caudal superior temporal plane in macaque monkeys. The Journal of Comparative Neurology, 502(6), 894–923.PubMedGoogle Scholar
  181. Soto-Faraco, S., Lyons, J., Gazzaniga, M., Spence, C., & Kingstone, A. (2002). The ventriloquist in motion: Illusory capture of dynamic information across sensory modalities. Cognitive Brain Research, 14(1), 139–146.PubMedGoogle Scholar
  182. Soto-Faraco, S., Navarra, J., & Alsius, A. (2004). Assessing automaticity in audiovisual speech integration: Evidence from the speeded classification task. Cognition, 92(3), B13–B23.PubMedGoogle Scholar
  183. Stein, B. E., & Meredith, M. A. (1993). The merging of the senses. Cambridge, MA: MIT Press.Google Scholar
  184. Stein, B. E., London, N., Wilkinson, L. K., & Price, D. D. (1996). Enhancement of perceived visual intensity by auditory stimuli: A psychophysical analysis. Journal of Cognitive Neuroscience, 8(6), 497–506.Google Scholar
  185. Steinschneider, M., Tenke, C. E., Schroeder, C. E., Javitt, D. C., Simpson, G. V., Arezzo, J. C., & Vaughan Jr., H. G. (1992). Cellular generators of the cortical auditory evoked potential initial component. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 84(2), 196–200.Google Scholar
  186. Steinschneider, M., Schroeder, C. E., Arezzo, J. C., & Vaughan, H. G., Jr. (1994). Speech-evoked activity in primary auditory cortex: Effects of voice onset time. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 92(1), 30–43.Google Scholar
  187. Steinschneider, M., Reser, D., Fishman, Y., Schroeder, C., & Arezzo, J. (1998). Click train encoding in primary auditory cortex of the awake monkey: Evidence for two mechanisms subserving pitch perception. Journal of the Acoustical Society of America, 104(5), 2935.PubMedGoogle Scholar
  188. Stekelenburg, J. J., & Vroomen, J. (2005). An event-related potential investigation of the time-course of temporal ventriloquism. NeuroReport, 16(6).Google Scholar
  189. Stekelenburg, J. J., Vroomen, J., & de Gelder, B. (2004). Illusory sound shifts induced by the ventriloquist illusion evoke the mismatch negativity. Neuroscience Letters, 357(3), 163–166.PubMedGoogle Scholar
  190. Stratton, G. M. (1897). Vision without inversion of the retinal image. Psychological Review, 4(4), 341–360.Google Scholar
  191. Summerfield, Q. (1987). Some preliminaries to a comprehensive account of audio-visual speech perception. In B. Dodd & R. Campbell (Eds.), Hearing by eye: The psychology of lip-reading (pp. 3–51). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  192. Summerfield, Q. (1992). Lipreading and audio-visual speech perception. Philosophical Transactions: Biological Sciences, 335(1273), 71–78.Google Scholar
  193. Summerfield, Q., & McGrath, M. (1984). Detection and resolution of audio-visual incompatibility in the perception of vowels. The Quarterly Journal of Experimental Psychology Section A, 36(1), 51–74.Google Scholar
  194. Sur, M, Garraghty, P., & Roe, A. (1988). Experimentally induced visual projections into auditory thalamus and cortex. Science, 242(4884), 1437–1441.PubMedGoogle Scholar
  195. Sur, M., Pallas, S. L., & Roe, A. W. (1990). Cross-modal plasticity in cortical development: differentiation and specification of sensory neocortex. Trends in Neurosciences, 13(6), 227–233.PubMedGoogle Scholar
  196. Thomas, G. J. (1941). Experimental study of the influence of vision on sound localization. Journal of Experimental Psychology, 28, 167–177.Google Scholar
  197. Tiippana, K., Andersen, T. S., & Sams, M. (2004). Visual attention modulates audiovisual speech perception. European Journal of Cognitive Psychology, 16(3), 457–472.Google Scholar
  198. van Atteveldt, N., Formisano, E., Goebel, R., & Blomert, L. (2004). Integration of letters and speech sounds in the human brain. Neuron, 43(2), 271–282.PubMedGoogle Scholar
  199. van Atteveldt, N., Roebroeck, A., & Goebel, R. (2009). Interaction of speech and script in human auditory cortex: Insights from neuro-imaging and effective connectivity. Hearing Research, 258(1–2), 152–164.PubMedGoogle Scholar
  200. van Atteveldt, N., Blau, V., Blomert, L., & Goebel, R. (2010). fMRI-adaptation indicates selectivity to audiovisual content congruency in distributed clusters in human superior temporal cortex. BMC Neuroscience, 11(1), 11.PubMedGoogle Scholar
  201. van Wassenhove, V., Grant, K. W., & Poeppel, D. (2005). Visual speech speeds up the neural processing of auditory speech. Proceedings of the National Academy of Sciences of the USA, 102(4), 1181–1186.PubMedGoogle Scholar
  202. van Wassenhove, V., Grant, K. W., & Poeppel, D. (2007). Temporal window of integration in auditory-visual speech perception. Neuropsychologia, 45(3), 598–607.PubMedGoogle Scholar
  203. Vidal, J., Giard, M.-H., Roux, S., Barthélémy, C., & Bruneau, N. (2008). Cross-modal processing of auditory–visual stimuli in a no-task paradigm: A topographic event-related potential study. Clinical Neurophysiology, 119(4), 763–771.PubMedGoogle Scholar
  204. von Schiller, P. (1932). Die rauhigkeit als intermodale erscheinung. Zeitschrift für Psychologie Bildung, 127, 265–289.Google Scholar
  205. Vroomen, J., & de Gelder, B. (2004). Temporal ventriloquism: sound modulates the flash-lag effect. Journal of Experimental Psychology: Human Perception and Performance, 30(3), 513–518.PubMedGoogle Scholar
  206. Vroomen, J., Bertelson, P., & De Gelder, B. (2001). The ventriloquist effect does not depend on the direction of automatic visual attention. Attention, Perception, & Psychophysics, 63(4), 651–659.Google Scholar
  207. Watkins, S., Shams, L., Tanaka, S., Haynes, J.-D., & Rees, G. (2006). Sound alters activity in human V1 in association with illusory visual perception. NeuroImage, 31(3), 1247–1256.PubMedGoogle Scholar
  208. Woods, T. M., & Recanzone, G. H. (2004). Visually induced plasticity of auditory spatial perception in macaques. Current Biology, 14(17), 1559–1564.PubMedGoogle Scholar
  209. Wright, T. M., Pelphrey, K. A., Allison, T., McKeown, M. J., & McCarthy, G. (2003). Polysensory interactions along lateral temporal regions evoked by audiovisual speech. Cerebral Cortex, 13(10), 1034–1043.PubMedGoogle Scholar
  210. Yau, J. M., Olenczak, J. B., Dammann, J. F., & Bensmaia, S. J. (2009). Temporal frequency channels are linked across audition and touch. Current Biology, 19(7), 561–566.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Virginie van Wassenhove
    • 1
  • Charles E. Schroeder
    • 2
  1. 1.CEA DSV.I2BM.NeuroSpin, Cognitive Neuroimaging Unit (INSERM U992)Gif s/YvetteFrance
  2. 2.Cognitive Neuroscience & Schizophrenia Program, Nathan S. Kline Institute for Psychiatric ResearchOrangeburgUSA

Personalised recommendations