Skip to main content

Multifunctional Nanoparticles for Personalized Medicine

  • Chapter
  • First Online:
Multifunctional Nanoparticles for Drug Delivery Applications

Abstract

Breakthroughs in genetic sequencing, biomarker discovery, clinical diagnostics, and drug development have led to the ability to diagnose and treat disease in a more individualized manner. Personalized medicine treats each patient as a unique individual and customizes therapy based on the unique disease characteristics of that individual. Personalizing medicine presents a particular challenge and promise in a disease like cancer which is diverse, dynamic, and where treatment is sensitive to disease stage. Multifunctional nanoparticles could play a critical role in the future of personalized medicine, having the versatility to package large quantities of chemotherapeutics and contrast agents, enhance pharmacokinetics of traditional treatments and imaging strategies, and allow specific targeting of diseased tissues both passively and actively. This chapter will focus on the use of multifunctional nanoparticles in the diagnosis, monitoring, and treatment of cancer with specific focus on applications in personalized medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hinestrosa MC et al (2007) Shaping the future of biomarker research in breast cancer to ensure clinical relevance. Nat Rev Cancer 7(4):309–315

    Article  Google Scholar 

  2. Levenson VV (2007) Biomarkers for early detection of breast cancer: what, when, and where? Biochim Biophys Acta 1770(6):847–856

    Article  Google Scholar 

  3. Hopkins TG, Burns PA, Routledge MN (2007) DNA methylation of GSTP1 as biomarker in diagnosis of prostate cancer. Urology 69(1):11–16

    Article  Google Scholar 

  4. Ballou B, Ernst LA, Waggoner AS (2005) Fluorescence imaging of tumors in vivo. Curr Med Chem 12(7):795–805

    Article  Google Scholar 

  5. Fukumura D, Jain RK (2007) Tumor microenvironment abnormalities: causes, consequences, and strategies to normalize. J Cell Biochem 101(4):937–949

    Article  Google Scholar 

  6. Hobbs SK et al (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci USA 95(8):4607–4612

    Article  MathSciNet  Google Scholar 

  7. Yuan F et al (1996) Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc Natl Acad Sci USA 93(25):14765–14770

    Article  Google Scholar 

  8. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1(1):27–31

    Article  Google Scholar 

  9. Padera TP et al (2004) Pathology: cancer cells compress intratumour vessels. Nature 427:695

    Article  Google Scholar 

  10. Wolff AC (2003) Liposomal anthracyclines and new treatment approaches for breast cancer. Oncologist 8(Suppl 2):25–30

    Article  Google Scholar 

  11. Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5(3):161–171

    Article  Google Scholar 

  12. Service RF (2005) Materials and biology. Nanotechnology takes aim at cancer. Science 310:1132–1134

    Article  Google Scholar 

  13. Maeda H (2001) SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. Adv Drug Deliv Rev 46(1–3):169–185

    Article  Google Scholar 

  14. Maeda H et al (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65(1–2):271–284

    Article  Google Scholar 

  15. Yuan F et al (1994) Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res 54(13):3352–3356

    Google Scholar 

  16. Karathanasis E et al (2009) Imaging nanoprobe for prediction of outcome of nanoparticle chemotherapy by using mammography. Radiology 250(2):398–406

    Article  Google Scholar 

  17. Karathanasis E et al (2008) Multifunctional nanocarriers for mammographic quantification of tumor dosing and prognosis of breast cancer therapy. Biomaterials 29(36):4815–4822

    Article  Google Scholar 

  18. Turetschek K et al (2001) MR imaging characterization of microvessels in experimental breast tumors by using a particulate contrast agent with histopathologic correlation. Radiology 218(2):562–569

    Google Scholar 

  19. Elston C, Ellis I (1991) Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19(5):403–410

    Article  Google Scholar 

  20. Weidner N et al (1991) Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma. N Engl J Med 324(1):1–8

    Article  MathSciNet  Google Scholar 

  21. Horak E et al (1992) Angiogenesis, assessed by platelet/endothelial cell adhesion molecule antibodies, as indicator of node metastases and survival in breast cancer. Lancet 340:1120–1124

    Article  Google Scholar 

  22. Carrau R et al (1995) Tumor angiogenesis as a predictor of tumor aggressiveness and metastatic potential in squamous cell carcinoma of the head and neck. Invasion Metastasis 15(5–6):197–202

    Google Scholar 

  23. Meitar D et al (1996) Tumor angiogenesis correlates with metastatic disease, N-myc amplification, and poor outcome in human neuroblastoma. J Clin Oncol 14(2):405–414

    Google Scholar 

  24. Takebayashi Y et al (1996) Angiogenesis as an unfavorable prognostic factor in human colorectal carcinoma. Cancer 78(2):226–231

    Article  Google Scholar 

  25. Brooks P, Clark R, Cheresh D (1994) Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264:569–571

    Article  Google Scholar 

  26. Brooks P et al (1995) Antiintegrin alpha v beta 3 blocks human breast cancer growth and angiogenesis in human skin. J Clin Invest 96(4):1815–1822

    Article  Google Scholar 

  27. Gladson C (1996) Expression of integrin alpha v beta 3 in small blood vessels of glioblastoma tumors. J Neuropathol Exp Neurol 55(11):1143–1149

    Article  Google Scholar 

  28. Sipkins D et al (1998) Detection of tumor angiogenesis in vivo by alpha v beta 3-targeted magnetic resonance imaging. Nat Med 4(5):623–626

    Article  Google Scholar 

  29. Karathanasis E et al (2009) Tumor vascular permeability to a nanoprobe correlates to tumor-specific expression levels of angiogenic markers. PLoS One 4(6):e5843

    Article  Google Scholar 

  30. Cao Y, Jin R, Mirkin C (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297:1536–1540

    Article  Google Scholar 

  31. Alivisatos P (2003) The use of nanocrystals in biological detection. Nat Biotechnol 22(1):47–52

    Article  Google Scholar 

  32. Sinha R et al (2006) Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther 5(8):1909–1917

    Article  Google Scholar 

  33. Yezhelyev M et al (2006) Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol 7(8):657–667

    Article  Google Scholar 

  34. Saul JM et al (2003) Controlled targeting of liposomal doxorubicin via the folate receptor in vitro. J Control Release 92(1–2):49–67

    Article  Google Scholar 

  35. McNeeley K, Annapragada AV, Bellamkonda RV (2007) Decreased circulation time offsets increased efficacy of PEGylated nanocarriers targeting folate receptors of glioma. Nanotechnology 18:385101

    Article  Google Scholar 

  36. McNeeley KM et al (2009) Masking and triggered unmasking of targeting ligands on nanocarriers to improve drug delivery to brain tumors. Biomaterials 30(23–24):3986–3995

    Article  Google Scholar 

  37. Kale A, Torchilin V (2007) “Smart” drug carriers: PEGylated TATp-modified pH-sensitive liposomes. J Liposome Res 17(3–4):197–203

    Article  Google Scholar 

  38. Saul JM, Annapragada AV, Bellamkonda RV (2006) A dual-ligand approach for enhancing targeting selectivity of therapeutic nanocarriers. J Control Release 114(3):277–287

    Article  Google Scholar 

  39. Majoros I et al (2006) PAMAM dendrimer-based multifunctional conjugate for cancer therapy: Synthesis, characterization, and functionality. Biomacromolecules 7(2):572–579

    Article  Google Scholar 

  40. Kukowska-Latallo J et al (2005) Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res 65(12):5317–5324

    Article  Google Scholar 

  41. Olson ES et al (2010) Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and MR imaging of proteases. Proc Natl Acad Sci USA 107(9):4311–4316

    Article  Google Scholar 

  42. Liu Z et al (2007) In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol 2(1):47–52

    Article  Google Scholar 

  43. Yatvin M et al (1978) Design of liposomes for enhanced local release of drugs by hyperthermia. Science 202:1290–1293

    Article  Google Scholar 

  44. Maruyama K et al (1993) Enhanced delivery of doxorubicin to tumor by long-circulating thermosensitive liposomes and local hyperthermia. Biochim Biophys Acta-Biomembranes 1149(2):209–216

    Article  Google Scholar 

  45. Unezaki S et al (1994) Enhanced delivery and antitumor activity of doxorubicin using long-circulating thermosensitive liposomes containing amphipathic polyethylene glycol in combination with local hyperthermia. Pharm Res 11(8):1180–1185

    Article  Google Scholar 

  46. Gaber M et al (1996) Thermosensitive liposomes: extravasation and release of contents in tumor microvascular networks. Int J Radiat Oncol Biol Phys 36(5):1177–1187

    Article  Google Scholar 

  47. Needham D et al (2000) A new temperature-sensitive liposome for use with mild hyperthermia: characterization and testing in a human tumor xenograft model. Cancer Res 60(5):1197–1201

    MathSciNet  Google Scholar 

  48. Li L et al (2010) Triggered content release from optimized stealth thermosensitive liposomes using mild hyperthermia. J Control Release 143(2):274–279

    Article  Google Scholar 

  49. Johannsen M et al (2007) Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: results of a prospective phase I trial. Int J Hyperthermia 23(3):315–323

    Article  Google Scholar 

  50. Paasonen L et al (2007) Gold nanoparticles enable selective light-induced contents release from liposomes. J Control Release 122(1):86–93

    Article  Google Scholar 

  51. Wu G et al (2008) Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells. J Am Chem Soc 130(26):8175–8177

    Article  Google Scholar 

  52. Huang X et al (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128(6):2115–2120

    Article  Google Scholar 

  53. Drummond DC, Zignani M, Leroux JC (2000) Current status of pH-sensitive liposomes in drug delivery. Prog Lipid Res 39(5):409–460

    Article  Google Scholar 

  54. Slepushkin V et al (1997) Sterically stabilized pH-sensitive liposomes. J Biol Chem 272(4):2382–2388

    Article  Google Scholar 

  55. Ishida T et al (2001) Targeted delivery and triggered release of liposomal doxorubicin enhances cytotoxicity against human B lymphoma cells. Biochim Biophys Acta-Biomembranes 1515(2):144–158

    Article  Google Scholar 

  56. Liu Z et al (2007) Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 1(1):50–56

    Article  Google Scholar 

  57. Terada T et al (2006) Novel PEG-matrix metalloproteinase-2 cleavable peptide-lipid containing galactosylated liposomes for hepatocellular carcinoma-selective targeting. J Control Release 111(3):333–342

    Article  Google Scholar 

  58. Elegbede A et al (2008) Mechanistic studies of the triggered release of liposomal contents by matrix metalloproteinase-9. J Am Chem Soc 130(32):10633–10642

    Article  Google Scholar 

  59. Golub T et al (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286:531–537

    Article  Google Scholar 

  60. Ross D et al (2000) Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet 24(3):227–235

    Article  Google Scholar 

  61. Alizadeh A et al (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403:503–511

    Article  Google Scholar 

  62. Legendre J, Szoka F Jr (1992) Delivery of plasmid DNA into mammalian cell lines using pH-sensitive liposomes: comparison with cationic liposomes. Pharm Res 9(10):1235–1242

    Article  Google Scholar 

  63. Hood J et al (2002) Tumor regression by targeted gene delivery to the neovasculature. Science 296:2404–2407

    Article  Google Scholar 

  64. Kam N et al (2005) Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci USA 102(33):11600–11605

    Article  Google Scholar 

  65. Schiffelers R et al (2004) Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res 32(19):e149

    Article  Google Scholar 

  66. Zhang Z et al (2006) Delivery of telomerase reverse transcriptase small interfering RNA in complex with positively charged single-walled carbon nanotubes suppresses tumor growth. Clin Cancer Res 12(16):4933–4939

    Article  Google Scholar 

  67. Kedmi R, Peer D (2009) RNAi nanoparticles in the service of personalized medicine. Nanomedicine (Lond) 4(8):853–855

    Article  Google Scholar 

  68. Pridgen E, Langer R, Farokhzad O (2007) Biodegradable, polymeric nanoparticle delivery systems for cancer therapy. Nanomedicine 2(5):669–680

    Article  Google Scholar 

  69. Kohler N et al (2005) Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells. Langmuir 21(19):8858–8864

    Article  Google Scholar 

  70. Kohler N et al (2006) Methotrexate immobilized poly (ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery. Small 2(6):785–792

    Article  MathSciNet  Google Scholar 

  71. Yu M et al (2008) Drug loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew Chem Int Ed 47(29):5362–5365

    Article  Google Scholar 

  72. Wang A et al (2008) Superparamagnetic iron oxide nanoparticle-aptamer bioconjugates for combined prostate cancer imaging and therapy. ChemMedChem 3(9):1311–1315

    Article  Google Scholar 

  73. Park H et al (2008) Multifunctional nanoparticles for photothermally controlled drug delivery and magnetic resonance imaging enhancement. Small 4(2):192–196

    Article  Google Scholar 

  74. Yang J et al (2007) Multifunctional magneto polymeric nanohybrids for targeted detection and synergistic therapeutic effects on breast cancer. Angew Chem Int Ed 46(46):8836–8839

    Article  Google Scholar 

  75. Winter P et al (2003) Molecular imaging of angiogenesis in nascent Vx-2 rabbit tumors using a novel 3-targeted nanoparticle and 1.5 Tesla magnetic resonance imaging. Cancer Res 63(18):5838–5843

    Google Scholar 

  76. Winter P et al (2006) Endothelial alpha v beta 3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arterioscler Thromb Vasc Biol 26(9):2103–2109

    Article  Google Scholar 

  77. Alivisatos A, Gu W, Larabell C (2005) Quantum dots as cellular probes. Biomed Eng 7:55–76

    Google Scholar 

  78. Gao X et al (2005) In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 16(1):63–72

    Article  Google Scholar 

  79. Michalet X et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544

    Article  Google Scholar 

  80. Slotkin J et al (2007) Cellular magnetic resonance imaging: nanometer and micrometer size particles for noninvasive cell localization. Neurotherapeutics 4(3):428–433

    Article  Google Scholar 

Download references

Acknowledgments

Funding from the National Institutes of Health (NCI, CA 153229), National Science Foundation (CBET 0756567), Georgia Cancer Coalition, Coulter Foundation, and Ian’s Friends Foundation is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi V. Bellamkonda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Roller, B.T., McNeeley, K.M., Bellamkonda, R.V. (2012). Multifunctional Nanoparticles for Personalized Medicine. In: Svenson, S., Prud'homme, R. (eds) Multifunctional Nanoparticles for Drug Delivery Applications. Nanostructure Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2305-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-2305-8_13

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-2304-1

  • Online ISBN: 978-1-4614-2305-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics