Injectable Multistage Nanovectors for Enhancing Imaging Contrast and Directed Therapy

Chapter
Part of the Nanostructure Science and Technology book series (NST)

Abstract

Nanovectors are powerful tools for the systemic delivery of therapeutic and imaging agents in oncology. We have recently introduced multistage nanovectors (MSV), designed to overcome sequential biological barriers. The first stage, comprised of porous silicon microparticles, targets tumor-associated endothelium. Once arrested at the disease site, second-stage nanoparticles carrying the therapeutic and imaging agents are released into the tumor microenvironment by time-dependent degradation of the silicon carrier. Particles–cell interactions and degradation of MSV can be controlled by means of particle surface modifications. In this chapter, we will describe studies related to the MSV, focusing on fabrication, intracellular multisite trafficking, advanced therapeutic systems, and contrast agents.

Keywords

Surfactant Porosity Torque Chitosan Polysaccharide 

References

  1. 1.
    Winau F, Westphal O, Winau R (2004) Paul Ehrlich – in search of the magic bullet. Microbes Infect 6(8):786–789CrossRefGoogle Scholar
  2. 2.
    Blagosklonny MV (2004) Analysis of FDA approved anticancer drugs reveals the future of cancer therapy. Cell Cycle 3(8):1035–1042Google Scholar
  3. 3.
    Hatefi A, Amsden B (2002) Camptothecin delivery methods. Pharm Res 19(10):1389–1399CrossRefGoogle Scholar
  4. 4.
    Heath JR, Davis ME (2008) Nanotechnology and cancer. Annu Rev Med 59:251–265CrossRefGoogle Scholar
  5. 5.
    Wang MD et al (2007) Nanotechnology for targeted cancer therapy. Expert Rev Anticancer Ther 7(6):833–837CrossRefGoogle Scholar
  6. 6.
    Riehemann K et al (2009) Nanomedicine – challenge and perspectives. Angew Chem Int Ed 48(5):872–897CrossRefGoogle Scholar
  7. 7.
    Wagner V et al (2006) The emerging nanomedicine landscape. Nat Biotechnol 24(10):1211–1217CrossRefGoogle Scholar
  8. 8.
    Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5(3):161–171CrossRefGoogle Scholar
  9. 9.
    Sanhai WR et al (2008) Seven challenges for nanomedicine. Nat Nanotechnol 3(5):242–244CrossRefGoogle Scholar
  10. 10.
    Godin B et al (2010) An integrated approach for the rational design of nanovectors for biomedical imaging and therapy. Adv Genet 69:31–64CrossRefGoogle Scholar
  11. 11.
    Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4(2):145–160CrossRefGoogle Scholar
  12. 12.
    Hashizume H et al (2000) Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 156(4):1363–1380CrossRefGoogle Scholar
  13. 13.
    Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41:189–207CrossRefGoogle Scholar
  14. 14.
    Duncan R (2003) The dawning era of polymer therapeutics. Nat Rev Drug Discov 2(5):347–360CrossRefGoogle Scholar
  15. 15.
    Sutton D et al (2007) Functionalized micellar systems for cancer targeted drug delivery. Pharm Res 24(6):1029–1046MathSciNetCrossRefGoogle Scholar
  16. 16.
    Lee CC et al (2005) Designing dendrimers for biological applications. Nat Biotechnol 23(12):1517–1526CrossRefGoogle Scholar
  17. 17.
    Harris JM, Chess RB (2003) Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov 2(3):214–221CrossRefGoogle Scholar
  18. 18.
    Maeda H, Bharate GY, Daruwalla J (2009) Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm 71(3):409–419CrossRefGoogle Scholar
  19. 19.
    Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6(9):688–701CrossRefGoogle Scholar
  20. 20.
    Brannon-Peppas L, Blanchette JO (2004) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 56(11):1649–1659CrossRefGoogle Scholar
  21. 21.
    Kale AA, Torchilin VP (2007) “Smart” drug carriers: PEGylated TATp-modified pH-sensitive liposomes. J Liposome Res 17(3–4):197–203CrossRefGoogle Scholar
  22. 22.
    Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACS Nano 3(1):16–20CrossRefGoogle Scholar
  23. 23.
    Souza GR, Staquicini FI, Christianson DR, Ozawa MG, Miller JH, Pasqualini R, Arap W. Combinatorial targeting and nanotechnology applications. Biomed Microdevices. 2010; 12(4):597–606Google Scholar
  24. 24.
    Juweid M et al (1992) Micropharmacology of monoclonal antibodies in solid tumors: direct experimental evidence for a binding site barrier. Cancer Res 52(19):5144–5153Google Scholar
  25. 25.
    Nakanishi T et al (2001) Development of the polymer micelle carrier system for doxorubicin. J Control Release 74(1–3):295–302CrossRefGoogle Scholar
  26. 26.
    Kukowska-Latallo JF et al (2005) Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res 65(12):5317–5324CrossRefGoogle Scholar
  27. 27.
    Ferrari M (2010) Frontiers in cancer nanomedicine: directing mass transport through biological barriers. Trends Biotechnol 28(4):181–188CrossRefGoogle Scholar
  28. 28.
    Hajitou A, Pasqualini R, Arap W (2006) Vascular targeting: recent advances and therapeutic perspectives. Trends Cardiovasc Med 16(3):80–88CrossRefGoogle Scholar
  29. 29.
    Gindy ME, Prud’homme RK (2009) Multifunctional nanoparticles for imaging, delivery and targeting in cancer therapy. Expert Opin Drug Deliv 6(8):865–878CrossRefGoogle Scholar
  30. 30.
    Latorre M, Rinaldi C (2009) Applications of magnetic nanoparticles in medicine: magnetic fluid hyperthermia. P R Health Sci J 28(3):227–238Google Scholar
  31. 31.
    Chuang VT, Kragh-Hansen U, Otagiri M (2002) Pharmaceutical strategies utilizing recombinant human serum albumin. Pharm Res 19(5):569–577CrossRefGoogle Scholar
  32. 32.
    Ho DH et al (1986) Clinical pharmacology of polyethylene glycol-L-asparaginase. Drug Metab Dispos 14(3):349–352Google Scholar
  33. 33.
    Vasey PA et al (1999) Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents-drug-polymer conjugates. Cancer Research Campaign Phase I/II Committee. Clin Cancer Res 5(1):83–94Google Scholar
  34. 34.
    Meerum Terwogt JM et al (2001) Phase I clinical and pharmacokinetic study of PNU166945, a novel water-soluble polymer-conjugated prodrug of paclitaxel. Anticancer Drugs 12(4):315–323CrossRefGoogle Scholar
  35. 35.
    Matsumura Y et al (2004) Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Br J Cancer 91(10):1775–1781CrossRefGoogle Scholar
  36. 36.
    Kim TY et al (2004) Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin Cancer Res 10(11):3708–3716CrossRefGoogle Scholar
  37. 37.
    Tasciotti E et al (2008) Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat Nanotechnol 3(3):151–157CrossRefGoogle Scholar
  38. 38.
    Decuzzi P, Ferrari M (2008) Design maps for nanoparticles targeting the diseased microvasculature. Biomaterials 29(3):377–384CrossRefGoogle Scholar
  39. 39.
    Decuzzi P, Ferrari M (2010) Modulating cellular adhesion through nanotopography. Biomaterials 31(1):173–179CrossRefGoogle Scholar
  40. 40.
    Decuzzi P, Ferrari M (2008) The receptor-mediated endocytosis of nonspherical particles. Biophys J 94(10):3790–3797CrossRefGoogle Scholar
  41. 41.
    Serda RE et al (2009) The association of silicon microparticles with endothelial cells in drug delivery to the vasculature. Biomaterials 30(13):2440–2448CrossRefGoogle Scholar
  42. 42.
    Serda RE et al (2009) Quantitative mechanics of endothelial phagocytosis of silicon microparticles. Cytometry A 75(9):752–760Google Scholar
  43. 43.
    Anglin EJ et al (2008) Porous silicon in drug delivery devices and materials. Adv Drug Deliv Rev 60(11):1266–1277CrossRefGoogle Scholar
  44. 44.
    Cohen MH et al (2003) Microfabrication of silicon-based nanoporous particulates for medical applications. Biomed Microdevices 5(3):253–259CrossRefGoogle Scholar
  45. 45.
    Nashat AH, Moronne M, Ferrari M (1998) Detection of functional groups and antibodies on microfabricated surfaces by confocal microscopy. Biotechnol Bioeng 60(2):137–146CrossRefGoogle Scholar
  46. 46.
    Salonen J et al (2008) Mesoporous silicon in drug delivery applications. J Pharm Sci 97(2):632–653CrossRefGoogle Scholar
  47. 47.
    Salonen J et al (2005) Mesoporous silicon microparticles for oral drug delivery: loading and release of five model drugs. J Control Release 108(2–3):362–374CrossRefGoogle Scholar
  48. 48.
    Meade SO et al (2004) Porous silicon photonic crystals as encoded microcarriers. Adv Mater 16(20):1811–1814CrossRefGoogle Scholar
  49. 49.
    Park JH et al (2009) Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 8(4):331–336CrossRefGoogle Scholar
  50. 50.
    Decuzzi P et al (2005) A theoretical model for the margination of particles within blood vessels. Ann Biomed Eng 33(2):179–190CrossRefGoogle Scholar
  51. 51.
    Canham LT, INSPEC (Information service) (1987) Properties of porous silicon, xviii. INSPEC, London, 405 pGoogle Scholar
  52. 52.
    Zhang XG (2004) Morphology and formation mechanisms of porous silicon. J Electrochem Soc 151(1):C69–C80CrossRefGoogle Scholar
  53. 53.
    Chiappini C et al (2010) Tailored porous silicon microparticles: fabrication and properties. Chemphyschem 11(5):1029–1035Google Scholar
  54. 54.
    Rupper A, Cardelli J (2001) Regulation of phagocytosis and endo-phagosomal trafficking pathways in Dictyostelium discoideum. Biochim Biophys Acta 1525(3):205–216CrossRefGoogle Scholar
  55. 55.
    Chenevier P et al (2000) Interaction of cationic colloids at the surface of J774 cells: a kinetic analysis. Biophys J 79(3):1298–1309CrossRefGoogle Scholar
  56. 56.
    Serda RE et al (2011) Proteomic analysis of serum opsonins impacting biodistribution and cellular association of porous silicon microparticles. Mol Imaging 10(1):43–55Google Scholar
  57. 57.
    Aderem A, Underhill DM (1999) Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17:593–623CrossRefGoogle Scholar
  58. 58.
    Kaplan G (1977) Differences in the mode of phagocytosis with Fc and C3 receptors in macrophages. Scand J Immunol 6(8):797–807CrossRefGoogle Scholar
  59. 59.
    Serda RE et al (2009) Mitotic trafficking of silicon microparticles. Nanoscale 1(2):250–259CrossRefGoogle Scholar
  60. 60.
    Olazabal IM et al (2002) Rho-kinase and myosin-II control phagocytic cup formation during CR, but not FcgammaR, phagocytosis. Curr Biol 12(16):1413–1418CrossRefGoogle Scholar
  61. 61.
    Ma S, Fey P, Chisholm RL (2001) Molecular motors and membrane traffic in Dictyostelium. Biochim Biophys Acta 1525(3):234–244CrossRefGoogle Scholar
  62. 62.
    Ferrati S et al (2010) Intracellular trafficking of silicon particles and logic-embedded vectors. Nanoscale 2:1512–1520CrossRefGoogle Scholar
  63. 63.
    Barysch SV et al (2009) Sorting in early endosomes reveals connections to docking- and fusion-associated factors. Proc Natl Acad Sci USA 106(24):9697–9702CrossRefGoogle Scholar
  64. 64.
    Clague MJ (1998) Molecular aspects of the endocytic pathway. Biochem J 336:271–282Google Scholar
  65. 65.
    Serda RE et al (2010) Cellular association and assembly of a multistage delivery system. Small 6(12):1329–1340CrossRefGoogle Scholar
  66. 66.
    Scott CC, Botelho RJ, Grinstein S (2003) Phagosome maturation: a few bugs in the system. J Membr Biol 193(3):137–152CrossRefGoogle Scholar
  67. 67.
    Fevrier B et al (2005) Exosomes: a bubble ride for prions? Traffic 6(1):10–17CrossRefGoogle Scholar
  68. 68.
    Serda RE et al (2010) Logic-embedded vectors for intracellular partitioning, endosomal escape, and exocytosis of nanoparticles. Small 6(23):2691–2700CrossRefGoogle Scholar
  69. 69.
    Wilhelm C et al (2008) Intracellular trafficking of magnetic nanoparticles to design multifunctional biovesicles. Small 4(5):577–582CrossRefGoogle Scholar
  70. 70.
    Chithrani BD, Chan WC (2007) Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 7(6):1542–1550CrossRefGoogle Scholar
  71. 71.
    Walczak P et al (2007) Applicability and limitations of MR tracking of neural stem cells with asymmetric cell division and rapid turnover: the case of the shiverer dysmyelinated mouse brain. Magn Reson Med 58(2):261–269CrossRefGoogle Scholar
  72. 72.
    Panyam J, Labhasetwar V (2003) Dynamics of endocytosis and exocytosis of poly(D, L-lactide-co-glycolide) nanoparticles in vascular smooth muscle cells. Pharm Res 20(2):212–220CrossRefGoogle Scholar
  73. 73.
    Ananta JS et al (2010) Geometrical confinement of gadolinium-based contrast agents in nanoporous particles enhances T1 contrast. Nat Nanotechnol 5(11):815–821CrossRefGoogle Scholar
  74. 74.
    Tasciotti E et al (2011) Near-infrared imaging method for the in vivo assessment of the biodistribution of nanoporous silicon particles. Mol Imaging 10(1):56–68Google Scholar
  75. 75.
    Puddephat M (2011) Principles of magnetic resonance imaging. http://www.mikepuddephat.com/Page/1603/Principles-of-magnetic-resonance-imaging. Accessed 9 May 2011
  76. 76.
    Fukuda Y et al (2006) Superparamagnetic iron oxide (SPIO) MRI contrast agent for bone marrow imaging: differentiating bone metastasis and osteomyelitis. Magn Reson Med Sci 5(4):191–196CrossRefGoogle Scholar
  77. 77.
    Gentile F et al (2008) The effect of shape on the margination dynamics of non-neutrally buoyant particles in two-dimensional shear flows. J Biomech 41(10):2312–2318CrossRefGoogle Scholar
  78. 78.
    Gentile F et al (2008) The margination propensity of spherical particles for vascular targeting in the microcirculation. J Nanobiotechnol 6:9CrossRefGoogle Scholar
  79. 79.
    Decuzzi P et al (2010) Size and shape effects in the biodistribution of intravascularly injected particles. J Control Release 141(3):320–327CrossRefGoogle Scholar
  80. 80.
    Booser DJ et al (2002) Phase II study of liposomal annamycin in the treatment of doxorubicin-resistant breast cancer. Cancer Chemother Pharmacol 50(1):6–8CrossRefGoogle Scholar
  81. 81.
    Zou Y, Priebe W, Perez-Soler R (1996) Lyophilized preliposomal formulation of the non-cross-resistant anthracycline annamycin: effect of surfactant on liposome formation, stability and size. Cancer Chemother Pharmacol 39(1–2):103–108CrossRefGoogle Scholar
  82. 82.
    Fire A et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811CrossRefGoogle Scholar
  83. 83.
    Mangala LS et al (2009) Liposomal siRNA for ovarian cancer. Methods Mol Biol 555:29–42CrossRefGoogle Scholar
  84. 84.
    Whitehead KA, Langer R, Anderson DG (2009) Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 8(2):129–138CrossRefGoogle Scholar
  85. 85.
    Tanaka T et al (2010) Sustained small interfering RNA delivery by mesoporous silicon particles. Cancer Res 70(9):3687–3696CrossRefGoogle Scholar
  86. 86.
    Godin B et al (2010) Tailoring the degradation kinetics of mesoporous silicon structures through PEGylation. J Biomed Mater Res A 94(4):1236–1243Google Scholar
  87. 87.
    Serda RE et al (2011) Multi-stage delivery nano-particle systems for therapeutic applications. Biochim Biophys Acta 1810(3):317–329CrossRefGoogle Scholar
  88. 88.
    Tanaka T et al (2010) In vivo evaluation of safety of nanoporous silicon carriers following single and multiple dose intravenous administrations in mice. Int J Pharm 402(1–2):190–197CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of NanomedicineThe Methodist Hospital Research InstituteHoustonUSA

Personalised recommendations