An On-Chip Temperature Sensor for the Measurement of RF Power Dissipation and Thermal Gradients

  • Marvin Onabajo
  • Jose Silva-Martinez


In this chapter, a design methodology is presented that aims at the extraction of RF circuit performance characteristics from the DC output of an on-chip temperature sensor. Any RF input signal can be applied to excite the circuit under examination because only dissipated power levels are measured, which makes this approach attractive for online thermal monitoring and built-in test scenarios. A fully-differential sensor topology is introduced that has been specifically designed for this method by constructing it with a wide dynamic range, programmable sensitivity to DC and RF power dissipation, as well as compatibility with CMOS technology. Furthermore, a procedure is outlined to model the local electro-thermal coupling between heat sources and the sensor, which is used to define the temperature sensor’s specifications as well as to predict the thermal signature of the circuit under test.


Power Dissipation Circuit Under Test Input Power Level Sensor Circuit Sensor Core 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Q. Yin, W.R. Eisenstadt, R.M. Fox, T. Zhang, A translinear RMS detector for embedded test of RF ICs. IEEE Trans. Instrum. Meas. 54(5), 1708–1714 (2005)CrossRefGoogle Scholar
  2. 2.
    S. Bhattacharya, A. Chatterjee, Use of embedded sensors for built-in-test RF circuits. in Proceedings of IEEE International Test Conference (ITC), Oct 2004, pp. 801–809Google Scholar
  3. 3.
    Q. Wang, M. Soma, RF front-end system gain and linearity built-in test. in Proceedings of 24th IEEE VLSI Test Symposium, May 2006, pp. 228–233Google Scholar
  4. 4.
    A. Valdes-Garcia, R. Venkatasubramanian, J. Silva-Martinez, E. Sánchez-Sinencio, A broadband CMOS amplitude detector for on-chip RF measurements. IEEE Trans. Instrum. Meas. 57(7), 1470–1477 (2008)CrossRefGoogle Scholar
  5. 5.
    J.-Y. Ryu, B.C. Kim, I. Sylla, A new low-cost RF built-in self-test measurement for system-on-chip transceivers. IEEE Trans. Instrum. Meas. 55(2), 381–388 (2006)CrossRefGoogle Scholar
  6. 6.
    T. Das, A. Gopalan, C. Washburn, P.R. Mukund, Self-calibration of input-match in RF front-end circuitry. IEEE Trans. Circuits Syst II: Express Briefs 52(12), 821–825 (2005)CrossRefGoogle Scholar
  7. 7.
    X. Fan, M. Onabajo, F.O. Fernández-Rodríguez, J. Silva-Martinez, E. Sánchez-Sinencio, A current injection built-in test technique for RF low-noise amplifiers. IEEE Trans. Circuits Syst. I: Regul. Pap. 55(7), 1794–1804 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    D.J. Walkey, T.S. Smy, R.G. Dickson, J.S. Brodsky, D.T. Zweidinger, R.M. Fox, Equivalent circuit modeling of static substrate thermal coupling using VCVS representation. IEEE J. Solid-State Circuits 37(9), 1198–1205 (2002)CrossRefGoogle Scholar
  9. 9.
    N. Nenadovic, S. Mijalkovic, L.K. Nanver, L.K.J. Vandamme, V. d’Alessandro, H. Schellevis, J.W. Slotboom, Extraction and modeling of self-heating and mutual thermal coupling impedance of bipolar transistors. IEEE J. Solid-State Circuits 39(10), 1764–1772 (2004)CrossRefGoogle Scholar
  10. 10.
    J. Altet, A. Rubio, E. Schaub, S. Dilahire, W. Claeys, Thermal coupling in integrated circuits: application to thermal testing. IEEE J. Solid-State Circuits 36(1), 81–91 (2001)CrossRefGoogle Scholar
  11. 11.
    S. Mattisson, H. Hagberg, P. Andreani, Sensitivity degradation in a tri-band GSM BiCMOS direct-conversion receiver caused by transient substrate heating. IEEE J. Solid-State Circuits 43(2), 486–496 (2008)CrossRefGoogle Scholar
  12. 12.
    D. Mateo, J. Altet, E. Aldrete-Vidrio, J. L. Gonzalez, Frequency characterization of a 2.4 GHz CMOS LNA by thermal measurements. in Proceedings of IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, June 2006, pp. 565–568Google Scholar
  13. 13.
    J. Altet, E. Aldrete-Vidrio, D. Mateo, X. Perpiñà, X. Jordà, M. Vellvehi, J. Millán, A. Salhi, S. Grauby, W. Claeys, S. Dilhaire, A heterodyne method for the thermal observation of the electrical behavior of high-frequency integrated circuits. Meas. Sci. Technol. 19(11), pp. 115704 (8 pp), Nov 2008Google Scholar
  14. 14.
    M. Onabajo, J. Altet, E. Aldrete-Vidrio, D. Mateo, J. Silva-Martinez, Electro-thermal design procedure to observe RF circuit power and linearity characteristics with a homodyne differential temperature sensordifferential temperature sensor. IEEE Trans. Circuits Syst. I: Regul. Pap. 58(3), 458–469 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    M.D. Scott, B.E. Boser, K.S.J. Pister, An ultralow-energy ADC for smart dust. IEEE J. Solid-State Circuits 38(7), 1123–1129 (2003)CrossRefGoogle Scholar
  16. 16.
    N. Verma, A.P. Chandrakasan, An ultra low energy 12-bit rate-resolution scalable SAR ADC for wireless sensor nodes. IEEE J. Solid-State Circuits 42(6), 1196–1205 (2007)CrossRefGoogle Scholar
  17. 17.
    L. Codecasa, D. D’Amore, P. Maffezzoni, Modeling the thermal response of semiconductor devices through equivalent electrical networks. IEEE Trans. Circuits Syst. I: Fundam. Theor. App. 49(8), 1187–1197 (2002)CrossRefGoogle Scholar
  18. 18.
    V. Szekely, On the representation of infinite-length distributed RC one-ports. IEEE Trans. Circuits Syst. 38(7), 711–719 (1991)CrossRefGoogle Scholar
  19. 19.
    S.-S. Lee, D.J. Allstot, Electrothermal simulations of integrated circuits. IEEE J. Solid-State Circuits 28(12), 1283–1293 (1993)CrossRefGoogle Scholar
  20. 20.
    W. Van Petegem, B. Geeraerts, W. Sansen, B. Graindourze, Electrothermal simulation and design of integrated circuits. IEEE J. Solid-State Circuits 29(2), 143–146 (1994)CrossRefGoogle Scholar
  21. 21.
    J. Michejda, S.K. Kim, A precision CMOS bandgap reference. IEEE J. Solid-State Circuits 19(6), 1014–1021 (1984)CrossRefGoogle Scholar
  22. 22.
    H.M. Geddada, J.W. Park, J. Silva-Martinez, Robust derivative superposition method for linearising broadband LNAs. Electron. Lett. 45(9), 435–436 (2009)CrossRefGoogle Scholar
  23. 23.
    E. Aldrete-Vidrio, D. Mateo, J. Altet, Differential temperature sensors fully compatible with a 0.35 μm CMOS process. IEEE Trans. Compon. Packag. Technol. 30(4), 618–626 (2007)CrossRefGoogle Scholar
  24. 24.
    M.A.P. Pertijs, G.C.M. Meijer, J.H. Huijsing, Precision temperature measurement using CMOS substrate pnp transistors. IEEE Sens. J. 4(3), 294–300 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Marvin Onabajo
    • 1
  • Jose Silva-Martinez
    • 2
  1. 1.Department of Electrical and Computer Engineering, 409 Dana Research CenterNortheastern UniversityBostonUSA
  2. 2.Department of Electrical and Computer EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations