Skip to main content

High-Linearity Transconductance Amplifiers with Digital Correction Capability

  • Chapter
  • First Online:
Analog Circuit Design for Process Variation-Resilient Systems-on-a-Chip

Abstract

The push towards wider bandwidths in baseband filter applications calls for operational transconductance amplifiers (OTAs) with progressively better linearity at higher frequencies. In this chapter, an architectural solution is described that can be applied to diverse circuit-level OTA configurations. Effective linearization over a wide frequency range demands a mechanism to correct for high-frequency effects and process variations. Accordingly, digital programmability to ensure high linearity and compatibility with modern CMOS technologies is discussed. The linearization technique utilizes two matched OTAs to cancel harmonic distortion components, creating a robust architecture. Compensation for process variations and frequency-dependent distortion based on Volterra series analysis is achieved by employing a delay equalization scheme with on-chip programmable resistors.

This chapter includes portions reprinted with permission, from “Attenuation-predistortion linearization of CMOS OTAs with digital correction of process variations in OTA-C filter applications,” M. Mobarak, M. Onabajo, J. Silva-Martinez, and E. Sánchez-Sinencio, IEEE J. Solid-State Circuits, vol. 45, no. 2, pp. 351–367, Feb. 2010, © 2010 IEEE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Saari, M. Kaltiokallio, S. Lindfors, J. Ryynänen, K.A.I. Halonen, A 240 MHz low-pass filter with variable gain in 65-nm CMOS for a UWB radio receiver. IEEE Trans. Circuits Syst. Regul. Pap. 56(7), 1488–1499 (2009)

    Article  Google Scholar 

  2. M. Gambhir, V. Dhanasekaran, J. Silva-Martinez, E. Sánchez-Sinencio, A low power 1.3 GHz dual-path current mode Gm-C filter, in Proceedings of IEEE Custom Integrated Circuits Conference (CICC), Sept 2008, pp. 703–706

    Google Scholar 

  3. R. Schoofs, M.S.J. Steyaert, W.M.C. Sansen, A design-optimized continuous-time delta-sigma ADC for WLAN applications. IEEE Trans. Circuits Syst. Regul. Pap. 54(1), 209–217 (2007)

    Article  Google Scholar 

  4. D. Healy, Analog-to-Information (A-to-I) Receiver Development Program, BAA 08-03 Announcement, Defense Advanced Research Projects Agency (DARPA), Microsystems Technology Office (MTO), Nov 2007

    Google Scholar 

  5. J.C. Rudell, O.E. Erdogan, D.G. Yee, R. Brockenbrough, C.S.G. Conroy, B. Kim, A 5th-order continuous-time harmonic-rejection GmC filter with in situ calibration for use in transmitter applications, in IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, Feb 2005, pp 322–323

    Google Scholar 

  6. A. Lewinski, J. Silva-Martinez, A high-frequency transconductor using a robust nonlinearity cancellation. IEEE Trans. Circuits Syst. Express Briefs 53(9), 896–900 (2006)

    Article  Google Scholar 

  7. E.A.M. Klumperink, B. Nauta, Systematic comparison of HF CMOS transconductors. IEEE Trans. Circuits Syst. Express Briefs 50(10), 728–741 (2003)

    Article  Google Scholar 

  8. S. D’Amico, M. Conta, A. Baschirotto, A 4.1 mW 10 MHz fourth-order source-follower-based continuous-time filter with 79 dB DR. IEEE J. Solid-State Circuits 41(12), 2713–2719 (2006)

    Article  Google Scholar 

  9. T.Y. Lo, C.-C. Hung, A 40 MHz double differential-pair CMOS OTA with −60 dB IM3. IEEE Trans. Circuits Syst. Regul. Pap. 55(1), 258–265 (2008)

    Article  MathSciNet  Google Scholar 

  10. J. Chen, E. Sánchez-Sinencio, J. Silva-Martinez, Frequency-dependent harmonic-distortion analysis of a linearized cross-coupled CMOS OTA and its application to OTA-C filters. IEEE Trans. Circuits Syst. Regul. Pap. 53(3), 499–510 (2006)

    Article  Google Scholar 

  11. W. Huang, E. Sánchez-Sinencio, Robust highly linear high-frequency CMOS OTA with IM3 below −70 dB at 26 MHz. IEEE Trans. Circuits Syst. Regul. Pap. 53(7), 1433–1447 (2006)

    Article  Google Scholar 

  12. D. Yongwang, R. Harjani, A +18 dBm IIP3 LNA in 0.35 μm CMOS, in IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, Feb 2001, pp. 162–163

    Google Scholar 

  13. M. Mobarak, M. Onabajo, J. Silva-Martinez, E. Sánchez-Sinencio, Attenuation- predistortion linearization of CMOS OTAs with digital correction of process variations in OTA-C filter applications. IEEE J. Solid-State Circuits 45(2), 351–367 (2010)

    Article  Google Scholar 

  14. R. Chawla, F. Adil, G. Serrano, P.E. Hasler, Programmable Gm-C filters using floating-gate operational transconductance amplifiers. IEEE Trans. Circuits Syst. Regul. Pap. 54(3), 481–491 (2007)

    Article  Google Scholar 

  15. S. Maas, Nonlinear Microwave and RF Circuits (Artech House, Boston, 2003)

    Google Scholar 

  16. E. Rodriguez-Villegas, H. Barnes, Solution to trapped charge in FGMOS transistors. Electron. Lett. 39(19), 1416–1417 (2003)

    Article  Google Scholar 

  17. A.P. Nedungadi, R.L. Geiger, High-frequency voltage-controlled continuous time lowpass filter using linearized CMOS integrators. Electron. Lett. 22, 729–731 (1986)

    Article  Google Scholar 

  18. D. Kaczman, M. Shah, M. Alam, M. Rachedine, D. Cashen, L. Han, A. Raghavan, A single-chip 10-band WCDMA/HSDPA 4-band GSM/EDGE SAW-less CMOS receiver with DigRF 3G interface and +90 dBm IIP2. IEEE J. Solid-State Circuits 44(3), 718–739 (2009)

    Article  Google Scholar 

  19. H. Darabi, J. Chiu, S. Khorram, H.J. Kim, Z. Zhou, H.-M. Chien, B. Ibrahim, E. Geronaga, L.H. Tran, A. Rofougaran, A dual-mode 802.11b/Bluetooth radio in 0.35 μm CMOS. IEEE J. Solid-State Circuits 40(3), 698–706 (2005)

    Article  Google Scholar 

  20. I. Vassiliou, K. Vavelidis, T. Georgantas, S. Plevridis, N. Haralabidis, G. Kamoulakos, C. Kapnistis, S. Kavadias, Y. Kokolakis, P. Merakos, J.C. Rudell, A. Yamanaka, S. Bouras, I. Bouras, A single-chip digitally calibrated 5.15–5.825 GHz 0.18 μm CMOS transceiver for 802.11a wireless LAN. IEEE J. Solid-State Circuits 38(12), 2221–2231 (2003)

    Article  Google Scholar 

  21. Y.-H. Hsieh, W.-Y. Hu, S.-M. Lin, C.-L. Chen, W.-K. Li, S.-J. Chen, D.J. Chen, An auto-I/Q calibrated CMOS transceiver for 802.11g. IEEE J. Solid-State Circuits 40(11), 2187–2192 (2005)

    Article  Google Scholar 

  22. A. Valdes-Garcia, R. Venkatasubramanian, R. Srinivasan, J. Silva-Martinez, E. Sánchez-Sinencio, A CMOS RF RMS detector for built-in testing of wireless transceivers, in Proceedings of IEEE VLSI Test Symposium, May 2005, pp. 249–254

    Google Scholar 

  23. A. Valdes-Garcia, R. Venkatasubramanian, J. Silva-Martinez, E. Sánchez-Sinencio, A broadband CMOS amplitude detector for on-chip RF measurements. IEEE Trans. Instrum. Meas. 57(7), 1470–1477 (2008)

    Article  Google Scholar 

  24. G. Bollati, S. Marchese, M. Demicheli, R. Castello, An eighth-order CMOS low-pass filter with 30–120 MHz tuning range and programmable boost. IEEE J. Solid-State Circuits 36(7), 1056–1066 (2001)

    Article  Google Scholar 

  25. A. Otin, S. Celma, C. Aldea, A 40–200 MHz programmable 4th-order Gm-C filter with auto-tuning system, in Proceedings of 33rd European Solid-State Circuits Conference (ESSCIRC), Sept 2007, pp. 214–217

    Google Scholar 

  26. S. Dosho, T. Morie, H. Fujiyama, A 200 MHz seventh-order equiripple continuous-time filter by design of nonlinearity suppression in 0.25 μm CMOS process. IEEE J. Solid-State Circuits 37(5), 559–565 (2002)

    Article  Google Scholar 

  27. S. Pavan, T. Laxminidhi, A 70–500 MHz programmable CMOS filter compensated for MOS nonquasistatic effects, in Proceedings of 32nd European Solid-State Circuits Conference (ESSCIRC), Sept 2006, pp. 328–331

    Google Scholar 

  28. K. Kwon, H.-T. Kim, K. Lee, A 50–300 MHz highly linear and low-noise CMOS Gm-C filter adopting multiple gated transistors for digital TV tuner ICs. IEEE Trans. Microwave Theory Tech. 57(2), 306–313 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Onabajo, M., Silva-Martinez, J. (2012). High-Linearity Transconductance Amplifiers with Digital Correction Capability. In: Analog Circuit Design for Process Variation-Resilient Systems-on-a-Chip. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2296-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-2296-9_3

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-2295-2

  • Online ISBN: 978-1-4614-2296-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics