Differential 77-GHz Current Re-Use Low-Noise Amplifier

  • Dietmar Kissinger
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)


In this chapter a novel differential current re-use LNA architecture with improved isolation for integrated 77 GHz receivers in SiGe technology is presented. The fabricated chips can be operated either in differential or single-ended mode. The narrow-band LNA shows a gain of 12 dB and reverse isolation better than − 40 dB in both modes with a differential SSB noise figure around 6.5 dB. An input-related 1 dB compression point of − 13 dBm is achieved with a total power consumption of 79 mW from a 3.3 V supply. The occupied chip area is 728 × 728 μ m2. The presented LNA shows the highest gain per stage at a comparable noise figure with simultaneous high linearity and low power consumption. Furthermore, a broadband LNA with 30% fractional bandwidth in SiGe technology is presented. The LNA shows a differential gain of 19.7 dB at the center frequency of 66 GHz and a noise figure of 5.8 dB at the upper corner frequency of 77 GHz. It dissipates 40 mW from a 3.3 V supply and an output related 1-dB compression point of at least + 3 dBm is achieved. The presented broadband LNA performs favorable against other published V-band LNAs in silicon technology. It shows the highest gain per stage, the highest gain-bandwidth product, as well as the highest output-referred 1-dB compression point at comparable power consumption.


Noise Figure Conversion Gain Reverse Isolation Input Return Loss Cascode Topology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. Chakraborty, “Design of a 120 GHz broadband LNA in SiGe technology,” Master’s thesis, Dept. of High Freq. Electron., Tech. Univ. Darmstadt, Darmstadt, Germany, 2009.Google Scholar
  2. 2.
    A. Chakraborty, H. L. Hartnagel, D. Kissinger, B. Laemmle, and R. Weigel, “Design of gain optimized broadband low noise amplifiers at 120 GHz using SiGe technology,” in IEEE German Microw. Conf., Berlin, Germany, Mar. 2010, pp. 268–271.Google Scholar
  3. 3.
    R. Reuter and Y. Yin, “A 77 GHz (W-band) SiGe LNA with 6.2 dB noise figure and gain adjustable to 33 dB,” in Proc. Bipolar/BiCMOS Circuits Technol. Meeting, Maastricht, The Netherlands, Oct. 2006.Google Scholar
  4. 4.
    S. Chartier, B. Schleicher, F. Korndörfer, S. Glisic, G. Fischer, and H. Schuhmacher, “A fully integrated fully differential low-noise amplifier for short range automotive radar using a SiGe:C BiCMOS technology,” in Proc. Eur. Microw. Integr. Circuits Conf., Munich, Germany, Oct. 2007, pp. 407–410.Google Scholar
  5. 5.
    L. Wang, S. Glisic, J. Borngräber, W. Winkler, and J. C. Scheytt, “A single-ended fully integrated SiGe 77/79 GHz receiver for automotive radar,” IEEE J. Solid-State Circuits, vol. 43, no. 9, pp. 1897–1908, Sep. 2008.CrossRefGoogle Scholar
  6. 6.
    J. Powell, H. Kim, and C. G. Sodini, “SiGe receiver front ends for millimeter-wave passive imaging,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 11, pp. 2416–2425, Nov. 2008.CrossRefGoogle Scholar
  7. 7.
    B. Dehlink, H.-D. Wohlmuth, K. Aufinger, T. F. Meister, J. Böck, and A. L. Scholtz, “A low-noise amplifier at 77 GHz in SiGe:C bipolar technology,” in IEEE Compound Semicond. Integr. Circuits Symp. Tech. Dig., Palm Springs, CA, Nov. 2005, pp. 287–290.Google Scholar
  8. 8.
    B. Dehlink, H.-D. Wohlmuth, K. Aufinger, F. Weiss, and A. L. Scholtz, “An 80 GHz SiGe quadrature receiver frontend,” in IEEE Compound Semicond. Integr. Circuits Symp. Tech. Dig., San Antonio, TX, Nov. 2006, pp. 197–200.Google Scholar
  9. 9.
    S. T. Nicolson, K. A. Tang, K. H. K. Yau, P. Chevalier, B. Sautreuil, and S. P. Voinigescu, “A low-voltage 77-GHz automotive radar chipset,” in IEEE MTT-S Int. Microw. Symp. Dig., Honolulu, HI, Jun. 2007, pp. 487–490.Google Scholar
  10. 10.
    D. Kissinger, H. P. Forstner, H. Jäger, L. Maurer, and R. Weigel, “A differential 77-GHz receiver with current re-use low-noise amplifier in SiGe technology,” in IEEE Topical Meeting on Silicon Monolithic Integr. Circuits in RF Syst. Dig., New Orleans, LA, Jan. 2010, pp. 128–131.Google Scholar
  11. 11.
    D. Kissinger, K. Aufinger, T. F. Meister, L. Maurer, and R. Weigel, “A high-linearity broadband 55–77 GHz differential low-noise amplifier with 20 dB gain in SiGe technology,” in Proc. Asia-Pacific Microw. Conf., Yokohama, Japan, Dec. 2010, pp. 1501–1504.Google Scholar
  12. 12.
    B. Dehlink, H.-D. Wohlmuth, H.-P. Forstner, H. Knapp, S. Trotta, K. Aufinger, T. F. Meister, J. Böck, and A. L. Scholtz, “A highly linear SiGe double-balanced mixer for 77 GHz automotive radar applications,” in Proc. IEEE Radio Frequency Integr. Circuits Symp., San Francisco, CA, Jun. 2006, pp. 235–238.Google Scholar
  13. 13.
    A. Babakhani, X. Guan, A. Komijani, A. Natarajan, and A. Hajimiri, “A 77 GHz phased-array transceiver with on-chip antennas in silicon: Receiver and antennas,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2795–2806, Dec. 2006.CrossRefGoogle Scholar
  14. 14.
    C. H. Doan, S. Emami, A. M. Niknejad, and R. W. Brodersen, “Millimeter-wave CMOS design,” IEEE J. Solid-State Circuits, vol. 40, no. 1, pp. 144–155, Jan. 2005.CrossRefGoogle Scholar
  15. 15.
    T. Yao, M. Q. Gordon, K. K. W. Tang, K. H. K. Yau, M.-T. Yang, P. Schvan, and S. P. Voinigescu, “Algorithmic design of CMOS LNAs and PAs for 60-GHz radio,” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1044–1057, May 2007.CrossRefGoogle Scholar
  16. 16.
    E. Cohen, S. Ravid, and D. Ritter, “An ultra low power LNA with 15dB gain and 4.4dB NF in 90nm CMOS process for 60 GHz phase array radio,” in Proc. IEEE Radio Frequency Integr. Circuits Symp., Atlanta, GA, Jun. 2008, pp. 61–64.Google Scholar
  17. 17.
    I. Haroun, J. Wright, C. Plett, A. Fathy, and Y.-C. Hsu, “A V-band 90-nm CMOS low-noise amplifier with modified CPW transmission lines for UWB systems,” in IEEE Topical Meeting on Silicon Monolithic Integr. Circuits in RF Syst. Dig., New Orleans, LA, Jan. 2010, pp. 368–371.Google Scholar
  18. 18.
    C. Weyers, P. Mayr, J. W. Kunze, and U. Langmann, “A 22.3dB voltage gain 6.1dB NF 60GHz LNA in 65nm CMOS with differential output,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, San Francisco, CA, Feb. 2008, pp. 192–193.Google Scholar
  19. 19.
    E. Janssen, R. Mahmoudi, E. van der Heijden, P. Sakian, A. de Graauw, R. Pijper, and A. van Roermund, “Fully balanced 60 GHz LNA with 37% bandwidth, 3.8 dB NF, 10 dB gain and constant group delay over 6 GHz bandwidth,” in IEEE Topical Meeting on Silicon Monolithic Integr. Circuits in RF Syst. Dig., New Orleans, LA, Jan. 2010, pp. 124–127.Google Scholar
  20. 20.
    B. A. Floyd, S. K. Reynolds, U. R. Pfeiffer, T. Zwick, T. Beukema, and B. Gaucher, “SiGe bipolar transceiver circuits operating at 60 GHz,” IEEE J. Solid-State Circuits, vol. 40, no. 1, pp. 156–167, Jan. 2005.CrossRefGoogle Scholar
  21. 21.
    Y. Sun, F. Herzel, J. Borngräber, and R. Kraemer, “60 GHz receiver building blocks in SiGe BiCMOS,” in IEEE Topical Meeting on Silicon Monolithic Integr. Circuits in RF Syst. Dig., Long Beach, CA, Jan. 2007, pp. 219–222.Google Scholar
  22. 22.
    A. Chen, H.-B. Liang, Y. Baeyens, Y.-K. Chen, and Y.-S. Lin, “A broadband millimeter-wave low-noise amplifier in SiGe BiCMOS technology,” in IEEE Topical Meeting on Silicon Monolithic Integr. Circuits in RF Syst. Dig., Orlando, FL, Jan. 2008, pp. 86–89.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Dietmar Kissinger
    • 1
  1. 1.University of Erlangen-NurembergErlangenGermany

Personalised recommendations