Skip to main content

The Role of Mineral Carbonation in Carbon Capture

  • Chapter
  • First Online:
Carbon Capture
  • 6775 Accesses

Abstract

Mineral carbonation takes place through the reaction of CO2 with an alkalinity source that includes divalent cations such as calcium (Ca2+) andmagnesium (Mg2+) as well as hydroxyl anions to form stable carbonate minerals. Similar to algae-based (Chap. 7) and electrochemical CO2 reduction (Chap. 8) processes, mineral carbonation has the potential to couple the capture with the long-term storage of CO2. Although most studies of mineral carbonation to date have focused on the carbonation of a pure CO2 gas (i.e., assuming a previous capture step), CCS in a single-step mineral carbonation process may one day be possible. Therefore, it is important to consider this concept in the broader portfolio of CO2 capture technologies. Figure 9.1 shows a possible mineral carbonation stream in which an alkalinity source reacts with CO2 to form mineral carbonate. Energy requirements include thermal or mechanical treatment of the alkalinity source to improve its reactivity toward mineral carbonation. Determining the end use of the mineral carbonate may provide an upper limit on how much energy one is willing to spend on the carbonation process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. (a) Lackner KS, Butt DP, Wendt CH (1997) Progress on binding CO2 in mineral substrates. Energy Convers Manag 38:259–264; (b) Sipilä J, Teir S, Zevenhoven R (2008) Carbon dioxide sequestration by mineral carbonation, Literature review update 2005–2007. Abo Akademi University, Turku; (c) Metz B (2005) IPCC special report on carbon dioxide capture and storage. Cambridge University Press, Cambridge, p 431

    Google Scholar 

  2. Gerdemann SJ, O’Connor WK, Dahlin DC, Penner LR, Rush H (2007) Ex situ aqueous mineral carbonation. Environ Sci Technol 41(7):2587–2593

    Article  CAS  Google Scholar 

  3. Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Ann Rev Mar Sci 1:169–192

    Article  Google Scholar 

  4. Goff F, Lackner KS (1998) Carbon dioxide sequestering using ultramafic rocks. Environ Geosci 5(3):89–102

    Article  Google Scholar 

  5. Rau GH, Caldeira K (1999) Enhanced carbonate dissolution: a means of sequestering waste CO2 as ocean bicarbonate. Energy Convers Manag 40(17):1803–1813

    Article  CAS  Google Scholar 

  6. House KZ, Schrag DP, Harvey CF, Lackner KS (2006) Permanent carbon dioxide storage in deep-sea sediments. Proc Natl Acad Sci USA 103(33):12291

    Article  CAS  Google Scholar 

  7. Guyot F, Daval D, Dupraz S, Martinez I, Ménez B, Sissmann O (2011) CO2 geological storage: the environmental mineralogy perspective. Comptes Rendus Geosci 343:246–259

    Google Scholar 

  8. Teir S, Eloneva S, Fogelholm CJ, Zevenhoven R (2006) Stability of calcium carbonate and magnesium carbonate in rainwater and nitric acid solutions. Energy Convers Manag 47(18–19):3059–3068

    Article  CAS  Google Scholar 

  9. Defaud F, Martinez I, Shilobreeva S (2009) Experimental study of Mg-rich silicate carbonation at 400 and 500°C and 1 kbar. Chem Geol 265;79–87

    Article  Google Scholar 

  10. Zevenhoven R, Fagerlund J (2010) Fixation of carbon dioxide into inorganic carbonates: the natural and artifical “weathering of silicates,” in carbon dioxide as chemical feedstock. Wiley-VCH Verlag GmbH & Co, Weinheim

    Google Scholar 

  11. (a) Krevor SC, Lackner KS (2009) Enhancing process kinetics for mineral carbon sequestration. Energy Procedia 1(1):4867–4871; (b) Krevor SCM, Lackner KS (2011) Enhancing serpentine dissolution kinetics for mineral carbon dioxide sequestration. Int J Greenh Gas Con 5(4):1073–1080; (c) Prigiobbe V, Mazzotti M (2011) Dissolution of olivine in the presence of oxalate, citrate and CO2 at 90°C and 120°C. Chem Eng Sci 66(24):6544–6554

    Google Scholar 

  12. Kelemen PB, Matter J, Streit EE, Rudge JF, Curry WB, Blusztajn J (2011) Rates and mechanisms of mineral carbonation in peridotite: natural processes and recipes for enhanced, in situ CO2 capture and storage. Ann Rev Earth Planet Sci 39:545–576

    Article  CAS  Google Scholar 

  13. Oelkers EH, Cole DR (2008) Carbon dioxide sequestration a solution to a global problem. Elements 4(5):305

    Article  CAS  Google Scholar 

  14. Ityokumbul MT, Chander S, O’Connor WK, Dahlin DC, Gerdemann SJ (2001) Reactor design considerations in mineral sequestration of carbon dioxide. Pennsylvania State University, Energy and GeoEnvironmental Engineering, University Park, PA

    Google Scholar 

  15. Kharaka YK, Thordsen JJ, Kakouros E, Herkelrath WN (2005) Impacts of petroleum production on ground and surface waters: Results from the Osage-Skiatook Petroleum Environmental Research A site, Osage County, Oklahoma. Environmental Geosciences 12(2):127

    Article  Google Scholar 

  16. (a) Soong Y, Fauth DL, Howard BH, Jones JR, Harrison DK, Goodman AL, Gray ML, Frommell EA (2006) CO2 sequestration with brine solution and fly ashes. Energy Convers Manag 47(13–14):1676–1685; (b) Soong Y, Goodman AL, McCarthy-Jones JR, Baltrus JP (2004) Experimental and simulation studies on mineral trapping of CO2 with brine. Energy Convers Manag 45(11–12):1845–1859

    Google Scholar 

  17. Constantz BR, Youngs A, Holland TC (2010) CO2-sequestering formed building materials. U.S. Patent 7771684, Calera Corporation

    Google Scholar 

  18. (a) Stolaroff JK, Lowry GV, Keith DW (2005) Using CaO- and MgO-rich industrial waste streams for carbon sequestration. Energy Convers Manag 46(5):687–699; (b) Teir S, Eloneva S, Fogelholm CJ, Zevenhoven R (2007) Dissolution of steelmaking slags in acetic acid for precipitated calcium carbonate production. Energy 32(4):528–539; (c) Huijgen WJJ, Comans RNJ (2005) Mineral CO2 sequestration by steel slag carbonation. Environ Sci Technol 39(24):9676–9682; (d) Lekakh SN, Rawlins CH, Robertson DGC, Richards VL, Peaslee KD (2008) Kinetics of aqueous leaching and carbonization of steelmaking slag. Metall Mater Trans B 39(1):125–134; (e) Bonenfant D, Kharoune L, Sauvé S, Hausler R, Niquette P, Mimeault M, Kharoune M (2008) CO2 sequestration potential of steel slags at ambient pressure and temperature. Ind Eng Chem Res 47(20):7610–7616

    Google Scholar 

  19. Huntzinger DN, Eatmon TD (2009) A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies. J Clean Prod 17(7):668–675

    Article  CAS  Google Scholar 

  20. (a) Huntzinger DN, Gierke JS, Kawatra SK, Eisele TC, Sutter LL (2009) Carbon dioxide sequestration in cement kiln dust through mineral carbonation. Environ Sci Technol 43(6):1986–1992; (b) Huntzinger DN, Gierke JS, Sutter LL, Kawatra SK, Eisele TC (2009) Mineral carbonation for carbon sequestration in cement kiln dust from waste piles. J Hazard Mater 168(1):31–37

    Google Scholar 

  21. (a) Rendek E, Ducom G, Germain P (2006) Carbon dioxide sequestration in municipal solid waste incinerator (MSWI) bottom ash. J Hazard Mater 128(1):73–79; (b) Rendek E, Ducom G, Germain P (2007) Influence of waste input and combustion technology on MSWI bottom ash quality. Waste Manag 27(10):1403–1407; (c) Toller S, Kärrman E, Gustafsson JP, Magnusson Y (2009) Environmental assessment of incinerator residue utilisation. Waste Manag 29(7):2071–2077

    Google Scholar 

  22. Hind AR, Bhargava SK, Grocott SC (1999) The surface chemistry of bayer process solids: a review. Colloids Surface A 146(1–3):359–374

    Article  CAS  Google Scholar 

  23. (a) Fernández-Bertos M, Simons S, Hills C, Carey P (2004) A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. J Hazard Mater 112(3):193–205; (b) Li X, Bertos MF, Hills CD, Carey PJ, Simon S (2007) Accelerated carbonation of municipal solid waste incineration fly ashes. Waste Manag 27(9):1200–1206

    Google Scholar 

  24. Van Oss HG, Padovani AC (2003) Cement manufacture and the environment, Part II: environmental challenges and opportunities. J Ind Ecol 7(1):93–126

    Article  Google Scholar 

  25. Corish A, Coleman T (1995) Cement kiln dust. Concrete 29(5):40–42

    Google Scholar 

  26. American Coal Ash Association (2008) Coal Combustion Product (CCP) Production & Use Survey Report

    Google Scholar 

  27. Vassilev SV, Vassileva CG (2005) Methods for characterization of composition of fly ashes from coal-fired power stations: a critical overview. Energy Fuels 19(3):1084–1098

    Article  CAS  Google Scholar 

  28. (a) Gunning PJ, Hills CD, Carey PJ (2010) Accelerated carbonation treatment of industrial wastes. Waste Manag 30(6):1081–1090; (b) Uliasz-Bochenczyk A, Mokrzycki E, Piotrowski Z, Pomykala R (2009) Estimation of CO2 sequestration potential via mineral carbonation in fly ash from lignite combustion in Poland. Energy Procedia 1(1):4873–4879

    Google Scholar 

  29. Montes-Hernandez G, Pérez-Lúpez R, Renard F, Nieto JM, Charlet L (2009) Mineral sequestration of CO2 by aqueous carbonation of coal combustion fly-ash. J Hazard Mater 161(2–3):1347–1354

    Article  CAS  Google Scholar 

  30. Tawfic TA, Reddy KJ, Gloss SP, Drever JI (1995) Reaction of CO2 with clean coal technology ash to reduce trace element mobility. Water Air Soil Pollut 84(3–4):385–398

    Article  CAS  Google Scholar 

  31. Navarro C, Díaz M, Villa-García MA (2010) Physico-chemical characterization of steel slag. study of its behavior under simulated environmental conditions. Environ Sci Technol 44(14):5383–5388

    CAS  Google Scholar 

  32. van Oss HG (2003) Slag-iron and steel – minerals yearbook. United States Geological Survey (USGS)

    Google Scholar 

  33. Huijgen WJJ, Ruijg GJ, Comans RNJ, Witkamp GJ (2006) Energy consumption and net CO2 sequestration of aqueous mineral carbonation. Ind Eng Chem Res 45(26):9184–9194

    Article  CAS  Google Scholar 

  34. Johnston M, Clark MW, McMahon P, Ward N (2010) Alkalinity conversion of bauxite refinery residues by neutralization. J Hazard Mater 182(1–3):710–715

    Article  CAS  Google Scholar 

  35. Agrawal A, Sahu KK, Pandey BD (2004) Solid waste management in non-ferrous industries in India. Resour Conserv Recycl 42(2):99–120

    Article  Google Scholar 

  36. Khaitan S, Dzombak DA, Lowry GV (2009) Chemistry of the acid neutralization capacity of bauxite residue. Environ Eng Sci 26(5):873–881

    Article  CAS  Google Scholar 

  37. Sahu RC, Patel RK, Ray BC (2010) Neutralization of red mud using CO2 sequestration cycle. J Hazard Mater 179(1–3):28–34

    Article  CAS  Google Scholar 

  38. (a) Arsova L, Haaren R, Goldstein N, Kaufman SM, Themelis NJ (2008) The state of garbage in America. Biocycle 49(12):22–24; (b) Wiles CC (1996) Municipal solid waste combustion ash: state-of-the-knowledge. J Hazard Mater 47(1–3):325–344

    Google Scholar 

  39. Prigiobbe V, Polettini A, Baciocchi R (2009) Gas-solid carbonation kinetics of air pollution control residues for CO2 storage. Chem Eng J 148(2–3):270–278

    Article  CAS  Google Scholar 

  40. Willett JC, Bolen WP (2011) Crushed stone and sand and gravel in the fourth quarter 2010: U.S. geological survey mineral industry surveys. United States Geological Survey (USGS)

    Google Scholar 

  41. Langer WH (1998) Natural aggregates of the conterminous united states: U.S. Geological Survey Bulletin 1954. United States Geological Survey (USGS)

    Google Scholar 

  42. Rubin ES Integrated environemental control model, version 6.2.4. http://www.cmu.edu/epp/iecm/index.html

  43. (a) Jacott M, Reed C, Taylor A, Winfield M (2003) Energy use in the cement industry in north america: emissions, waste generation and pollution control, 1990–2001; May 30; (b) International ICF (2007) energy trends in selected manufacturing sectors: opportunities and challenges for environmentally preferable energy outcomes; U.S. Environmental Protection Agency: March 2007

    Google Scholar 

  44. Van Oss HG (2011) Slag, iron and steel–2009 [Advance Release] – 2009 minerals yearbook. United States Geological Survey (USGS)

    Google Scholar 

  45. (a) PHMSA, Pipeline Information Management Mapping Application. Pipeline and Hazardous Materials Safety Administration (PHMSA), U.S. Dept. of Transportation: 2005; (b) EIA (2007) About U.S. natural gas pipelines – transporting natural gas. Energy Information Administration, U.S. Department of Energy, Washington, DC, p 76

    Google Scholar 

  46. (a) Sector 21 (2010a) EC0721SP1: mining: subject series: product summary: products or services statistics: 2007; (b) sector 21 (2010b) ec0721sm1: mining: subject series: materials summary: selected supplies minerals received for preparation purchased machinery and fuels consumed by type by industry: 2007; (c) Sector 21 (2010c) ec0721i1: mining: industry series: detailed statistics by industry for the united states: 2007

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Wilcox .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wilcox, J. (2012). The Role of Mineral Carbonation in Carbon Capture. In: Carbon Capture. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2215-0_9

Download citation

Publish with us

Policies and ethics