Skip to main content

Modeling Disease in a Dish

  • Chapter
  • First Online:
  • 1661 Accesses

Part of the book series: SpringerBriefs in Stem Cells ((BRIEFSSTEM))

Abstract

Main idea for therapeutic approaches by iPSCs at the beginning was the fact that patient-specific iPSCs provide important information for inherited human disorders because pluripotent stem cells are capable of differentiation into most, if not all cell types. This idea was deeply relied on the studies of directed differentiation of subtypes and genetically defined ESCs from animal models. Moreover, human ESC biology has been pursuing generating mutant human ESC lines as disease models since Thomson et al. derived human ESC lines in 1998. With the known disease-associated genetic loci and explicit disease phenotype, genetically modified human ESCs could help to cell replacement therapies and modeling human diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aasen T et al (2008) Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26(11):1276–1284

    PubMed  CAS  Google Scholar 

  • Abaci HE et al (2010) Adaptation to oxygen deprivation in cultures of human pluripotent stem cells, endothelial progenitor cells, and umbilical vein endothelial cells. Am J Physiol Cell Physiol 298(6):C1527–C1537

    PubMed  CAS  Google Scholar 

  • Agarwal S et al (2010) Telomere elongation in induced pluripotent stem cells from dyskeratosis congenita patients. Nature 464(7286):292–296

    PubMed  CAS  Google Scholar 

  • Alipio Z et al (2010) Sustained factor VIII production in hemophiliac mice 1 year after engraftment with induced pluripotent stem cell-derived factor VIII producing endothelial cells. Blood Coagul Fibrinolysis 21(5):502–504

    PubMed  Google Scholar 

  • Arbel G et al (2010) Methods for human embryonic stem cells derived cardiomyocytes cultivation, genetic manipulation, and transplantation. Methods Mol Biol 660:85–95

    PubMed  CAS  Google Scholar 

  • Baek KH et al (2009) Down's syndrome suppression of tumour growth and the role of the calcineurin inhibitor DSCR1. Nature 459(7250):1126–1130

    PubMed  CAS  Google Scholar 

  • Banerjee I et al (2011) Impact of co-culture on pancreatic differentiation of embryonic stem cells. J Tissue Eng Regen Med 5(4):313–323

    PubMed  CAS  Google Scholar 

  • Blelloch R et al (2007) Generation of induced pluripotent stem cells in the absence of drug selection. Cell Stem Cell 1(3):245–247

    PubMed  CAS  Google Scholar 

  • Cai J et al (2010) Dopaminergic neurons derived from human induced pluripotent stem cells survive and integrate into 6-OHDA-lesioned rats. Stem Cells Dev 19(7):1017–1023

    PubMed  CAS  Google Scholar 

  • Carvajal-Vergara X et al (2010) Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature 465(7299):808–812

    PubMed  CAS  Google Scholar 

  • Chan EM et al (2009) Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells. Nat Biotechnol 27(11):1033–1037

    PubMed  CAS  Google Scholar 

  • Colman A, Dreesen O (2009) Pluripotent stem cells and disease modeling. Cell Stem Cell 5(3):244–247

    PubMed  CAS  Google Scholar 

  • Comyn O et al (2010) Induced pluripotent stem cell therapies for retinal disease. Curr Opin Neurol 23(1):4–9

    PubMed  Google Scholar 

  • Daley GQ et al (2009) Broader implications of defining standards for the pluripotency of iPSCs. Cell Stem Cell 4(3):200–201; author reply 202

    Google Scholar 

  • Dick E et al (2010) Evaluating the utility of cardiomyocytes from human pluripotent stem cells for drug screening. Biochem Soc Trans 38(4):1037–1045

    PubMed  CAS  Google Scholar 

  • Dimos JT et al (2008) Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321(5893):1218–1221

    PubMed  CAS  Google Scholar 

  • Doetschman TC et al (1985) The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol 87:27–45

    PubMed  CAS  Google Scholar 

  • Ebert AD et al (2009) Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457(7227):277–280

    PubMed  CAS  Google Scholar 

  • Ellis J et al (2009) Alternative induced pluripotent stem cell characterization criteria for in vitro applications. Cell Stem Cell 4(3):198–199; author reply 202

    Google Scholar 

  • Gamm DM, Meyer JS (2010) Directed differentiation of human induced pluripotent stem cells: a retina perspective. Regen Med 5(3):315–317

    PubMed  Google Scholar 

  • Gearhart J (1998) New potential for human embryonic stem cells. Science 282(5391):1061–1062

    PubMed  CAS  Google Scholar 

  • Gerbal-Chaloin S et al (2010) Isolation and culture of adult human liver progenitor cells: in vitro differentiation to hepatocyte-like cells. Methods Mol Biol 640:247–260

    PubMed  CAS  Google Scholar 

  • Ghodsizadeh A et al (2010) Generation of liver disease-specific induced pluripotent stem cells along with efficient differentiation to functional hepatocyte-like cells. Stem Cell Rev 6(4):622–632

    PubMed  Google Scholar 

  • Grigoriadis AE et al (2010) Directed differentiation of hematopoietic precursors and functional osteoclasts from human ES and iPS cells. Blood 115(14):2769–2776

    PubMed  CAS  Google Scholar 

  • Hanna J et al (2007) Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318(5858):1920–1923

    PubMed  CAS  Google Scholar 

  • Hargus G et al (2010) Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proc Natl Acad Sci USA 107(36):15921–15926

    PubMed  CAS  Google Scholar 

  • Hemberger M et al (2009) Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington’s canal. Nat Rev Mol Cell Biol 10(8):526–537

    PubMed  CAS  Google Scholar 

  • Ho PJ et al (2010) Endogenous KLF4 expression in human fetal endothelial cells allows for reprogramming to pluripotency with just OCT3/4 and SOX2—brief report. Arterioscler Thromb Vasc Biol 30(10):1905–1907

    Google Scholar 

  • Homma K et al (2010) Sirt1 plays an important role in mediating greater functionality of human ES/iPS-derived vascular endothelial cells. Atherosclerosis 212(1):42–47

    Google Scholar 

  • Hotta A et al (2009) Isolation of human iPS cells using EOS lentiviral vectors to select for pluripotency. Nat Methods 6(5):370–376

    PubMed  CAS  Google Scholar 

  • Hu BY, Zhang SC (2009) Differentiation of spinal motor neurons from pluripotent human stem cells. Nat Protoc 4(9):1295–1304

    PubMed  CAS  Google Scholar 

  • Huang HP et al (2010) Factors from human embryonic stem cell-derived fibroblast-like cells promote topology-dependent hepatic differentiation in primate embryonic and induced pluripotent stem cells. J Biol Chem 285(43):33510–33519

    Google Scholar 

  • Huangfu D et al (2008) Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol 26(11):1269–1275

    PubMed  CAS  Google Scholar 

  • Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(suppl):245–254

    Google Scholar 

  • Jin ZB et al (2009) Induced pluripotent stem cells for retinal degenerative diseases: a new perspective on the challenges. J Genet 88(4):417–424

    PubMed  Google Scholar 

  • Kaichi S et al (2010) Cell line-dependent differentiation of induced pluripotent stem cells into cardiomyocytes in mice. Cardiovasc Res 88(2):314–323

    PubMed  CAS  Google Scholar 

  • Kaneko S et al (2010) Reprogramming adult hematopoietic cells. Curr Opin Hematol 17(4):271–275

    PubMed  Google Scholar 

  • Karumbayaram S et al (2009) Directed differentiation of human-induced pluripotent stem cells generates active motor neurons. Stem Cells 27(4):806–811

    PubMed  CAS  Google Scholar 

  • Kauffman SA (1993) Self-Organization and Adaptation in Complex System. Oxford University Press, Oxford

    Google Scholar 

  • Kawaguchi J et al (2005) Osteogenic and chondrogenic differentiation of embryonic stem cells in response to specific growth factors. Bone 36(5):758–769

    PubMed  CAS  Google Scholar 

  • Khan IF et al (2010) Engineering of human pluripotent stem cells by AAV-mediated gene targeting. Mol Ther 18(6):1192–1199

    PubMed  CAS  Google Scholar 

  • Kim JB et al (2009) Direct reprogramming of human neural stem cells by OCT4. Nature 461(7264):649–653

    PubMed  CAS  Google Scholar 

  • Kim K et al (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467(7313):285–290

    PubMed  CAS  Google Scholar 

  • Lamba DA et al (2010). Generation, purification and transplantation of photoreceptors derived from human induced pluripotent stem cells. PLoS One 5(1):e8763

    Google Scholar 

  • Lee G et al (2009) Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 461(7262):402–406

    PubMed  CAS  Google Scholar 

  • Lee G et al (2010) Derivation of neural crest cells from human pluripotent stem cells. Nat Protoc 5(4):688–701

    PubMed  CAS  Google Scholar 

  • Li W et al (2009) Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors. Cell Stem Cell 4(1):16–19

    PubMed  Google Scholar 

  • Liu H et al (2010) Generation of endoderm-derived human induced pluripotent stem cells from primary hepatocytes. Hepatology 51(5):1810–1819

    PubMed  CAS  Google Scholar 

  • Loh YH et al (2010) Reprogramming of T cells from human peripheral blood. Cell Stem Cell 7(1):15–19

    PubMed  Google Scholar 

  • Lowry WE et al (2008) Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci USA 105(8):2883–2888

    PubMed  CAS  Google Scholar 

  • Lu M et al (2009) Enhanced generation of hematopoietic cells from human hepatocarcinoma cell-stimulated human embryonic and induced pluripotent stem cells. Exp Hematol 37(8):924–936

    PubMed  CAS  Google Scholar 

  • Maehr R et al (2009) Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci USA 106(37):15768–15773

    PubMed  CAS  Google Scholar 

  • Maherali N et al (2007) Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1(1):55–70

    PubMed  CAS  Google Scholar 

  • Maherali N et al (2008) A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell 3(3):340–345

    PubMed  CAS  Google Scholar 

  • Mali P et al (2008) Improved efficiency and pace of generating induced pluripotent stem cells from human adult and fetal fibroblasts. Stem Cells 26(8):1998–2005

    PubMed  CAS  Google Scholar 

  • Marchetto MC et al (2010) A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143(4):527–539

    PubMed  CAS  Google Scholar 

  • Martinez-Fernandez A et al (2010) c-MYC independent nuclear reprogramming favors cardiogenic potential of induced pluripotent stem cells. J Cardiovasc Transl Res 3(1):13–23

    PubMed  Google Scholar 

  • Mattis VB, Svendsen CN (2011) Induced pluripotent stem cells: a new revolution for clinical neurology? Lancet Neurol 10(4):383–394

    PubMed  Google Scholar 

  • Meissner A et al (2007) Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol 25(10):1177–1181

    PubMed  CAS  Google Scholar 

  • Moretti A et al (2010) Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med 363(15):1397–1409

    PubMed  CAS  Google Scholar 

  • Meyer JS et al (2009) Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc Natl Acad Sci USA 106(39):16698–16703

    PubMed  CAS  Google Scholar 

  • Narazaki G et al (2008) Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation 118(5):498–506

    PubMed  Google Scholar 

  • Nelson TJ et al (2009) Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation 120(5):408–416

    PubMed  Google Scholar 

  • Nishimura K et al (2009) Transplantation of mouse induced pluripotent stem cells into the cochlea. Neuroreport 20(14):1250–1254

    PubMed  Google Scholar 

  • Okabe M et al (2009) Definitive proof for direct reprogramming of hematopoietic cells to pluripotency. Blood 114(9):1764–1767

    PubMed  CAS  Google Scholar 

  • Okita K et al (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448(7151):313–317

    PubMed  CAS  Google Scholar 

  • Osafune K et al (2008) Marked differences in differentiation propensity among human embryonic stem cell lines. Nat Biotechnol 26(3):313–315

    PubMed  CAS  Google Scholar 

  • Parameswaran S et al (2010) Induced pluripotent stem cells generate both retinal ganglion cells and photoreceptors: therapeutic implications in degenerative changes in glaucoma and age-related macular degeneration. Stem Cells 28(4):695–703

    PubMed  CAS  Google Scholar 

  • Park IH et al (2008a) Disease-specific induced pluripotent stem cells. Cell 134(5):877–886

    PubMed  CAS  Google Scholar 

  • Park IH et al (2008b) Disease-specific induced pluripotent stem cells. Cell 134(5):877–886

    PubMed  CAS  Google Scholar 

  • Pfannkuche K et al (2009) Cardiac myocytes derived from murine reprogrammed fibroblasts: intact hormonal regulation, cardiac ion channel expression and development of contractility. Cell Physiol Biochem 24(1–2):73–86

    PubMed  CAS  Google Scholar 

  • Polo JM et al (2010) Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol 28(8):848–855

    PubMed  CAS  Google Scholar 

  • Rathjen J, Rathjen PD (2003) Lineage specific differentiation of mouse ES cells: formation and differentiation of early primitive ectoderm-like (EPL) cells. Methods Enzymol 365:3–25

    PubMed  Google Scholar 

  • Rashid ST et al (2010) Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells. J Clin Invest 120(9):3127–3136

    PubMed  CAS  Google Scholar 

  • Raya A et al (2009) Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 460(7251):53–59

    PubMed  CAS  Google Scholar 

  • Saha K, Jaenisch R (2009) Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell 5(6):584–595

    PubMed  CAS  Google Scholar 

  • Schenke-Layland K et al (2008) Reprogrammed mouse fibroblasts differentiate into cells of the cardiovascular and hematopoietic lineages. Stem Cells 26(6):1537–1546

    PubMed  CAS  Google Scholar 

  • Senju S et al (2009) Characterization of dendritic cells and macrophages generated by directed differentiation from mouse induced pluripotent stem cells. Stem Cells 27(5):1021–1031

    PubMed  CAS  Google Scholar 

  • Senju S et al (2010) Pluripotent stem cells as source of dendritic cells for immune therapy. Int J Hematol 91(3):392–400

    PubMed  Google Scholar 

  • Soldner F et al (2009) Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136(5):964–977

    PubMed  CAS  Google Scholar 

  • Somers A et al (2010) Generation of transgene-free lung disease-specific human induced pluripotent stem cells using a single excisable lentiviral stem cell cassette. Stem Cells 28(10):1728–1740

    PubMed  CAS  Google Scholar 

  • Stadtfeld M, Hochedlinger K (2010) Induced pluripotency: history, mechanisms, and applications. Genes Dev 24(20):2239–2263

    PubMed  CAS  Google Scholar 

  • Stadtfeld M et al (2008) Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell 2(3):230–240

    PubMed  CAS  Google Scholar 

  • Stadtfeld M et al (2010) A reprogrammable mouse strain from gene-targeted embryonic stem cells. Nat Methods 7(1):53–55

    PubMed  CAS  Google Scholar 

  • Sun N et al (2009) Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells. Proc Natl Acad Sci USA 106(37):15720–15725

    PubMed  CAS  Google Scholar 

  • Swistowski A et al (2010) Efficient Generation of Functional Dopaminergic Neurons from Human Induced pluripotent Stem Cells under Defined Conditions. Stem Cells 28(10):1893–1904

    PubMed  CAS  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    PubMed  CAS  Google Scholar 

  • Takahashi K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    PubMed  CAS  Google Scholar 

  • Tamaoki N et al (2010) Dental pulp cells for induced pluripotent stem cell banking. J Dent Res 89(8):773–778

    PubMed  CAS  Google Scholar 

  • Tanaka T et al (2009) In vitro pharmacologic testing using human induced pluripotent stem cell-derived cardiomyocytes. Biochem Biophys Res Commun 385(4):497–502

    PubMed  CAS  Google Scholar 

  • Taranger CK et al (2005) Induction of dedifferentiation, genomewide transcriptional programming, and epigenetic reprogramming by extracts of carcinoma and embryonic stem cells. Mol Biol Cell 16(12):5719–5735

    PubMed  CAS  Google Scholar 

  • Tashiro K et al (2009) Efficient adipocyte and osteoblast differentiation from mouse induced pluripotent stem cells by adenoviral transduction. Stem Cells 27(8):1802–1811

    PubMed  CAS  Google Scholar 

  • Tateishi K et al (2008) Generation of insulin-secreting islet-like clusters from human skin fibroblasts. J Biol Chem 283(46):31601–31607

    PubMed  CAS  Google Scholar 

  • Taura D et al (2009) Adipogenic differentiation of human induced pluripotent stem cells: comparison with that of human embryonic stem cells. FEBS Lett 583(6):1029–1033

    PubMed  CAS  Google Scholar 

  • Tchieu J et al (2010) Female Human iPSCs Retain an Inactive X Chromosome. Cell Stem Cell 7(3):329–342

    PubMed  CAS  Google Scholar 

  • Teramura T et al (2010) Induction of mesenchymal progenitor cells with chondrogenic property from mouse-induced pluripotent stem cells. Cell Reprogram 12(3):249–261

    PubMed  CAS  Google Scholar 

  • Thomson JA et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    PubMed  CAS  Google Scholar 

  • Tolar J et al (2011) Hematopoietic differentiation of induced pluripotent stem cells from patients with mucopolysaccharidosis type I (Hurler syndrome). Blood 117(3):839–847

    PubMed  CAS  Google Scholar 

  • Tsuneto M et al (2003) In vitro differentiation of mouse ES cells into hematopoietic, endothelial, and osteoblastic cell lineages: the possibility of in vitro organogenesis. Methods Enzymol 365:98–114

    PubMed  Google Scholar 

  • Ueda T et al (2010) Generation of functional gut-like organ from mouse induced pluripotent stem cells. Biochem Biophys Res Commun 391(1):38–42

    PubMed  CAS  Google Scholar 

  • Unternaehrer JJ, Daley GQ (2011) Induced pluripotent stem cells for modelling human diseases. Philos Trans R Soc Lond B Biol Sci 366(1575):2274–2285

    PubMed  CAS  Google Scholar 

  • Urbach A et al (2010) Differential modeling of fragile X syndrome by human embryonic stem cells and induced pluripotent stem cells. Cell Stem Cell 6(5):407–411

    PubMed  CAS  Google Scholar 

  • Utikal J et al (2009) Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells. J Cell Sci 122(Pt 19):3502–3510

    PubMed  CAS  Google Scholar 

  • Wakayama T et al (2001) Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science 292(5517):740–743

    PubMed  CAS  Google Scholar 

  • Warren L et al (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7(5):618–630

    PubMed  CAS  Google Scholar 

  • Wdziekonski B et al (2003) Development of adipocytes from differentiated ES cells. Methods Enzymol 365:268–277

    PubMed  CAS  Google Scholar 

  • Wernig M et al (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448(7151):318–324

    PubMed  CAS  Google Scholar 

  • Wernig M et al (2008) A drug-inducible transgenic system for direct reprogramming of multiple somatic cell types. Nat Biotechnol 26(8):916–924

    PubMed  CAS  Google Scholar 

  • Xie CQ et al (2009) A comparison of murine smooth muscle cells generated from embryonic versus induced pluripotent stem cells. Stem Cells Dev 18(5):741–748

    PubMed  CAS  Google Scholar 

  • Xu D et al (2009) Phenotypic correction of murine hemophilia A using an iPS cell-based therapy. Proc Natl Acad Sci USA 106(3):808–813

    PubMed  CAS  Google Scholar 

  • Yamanaka S (2009a) Elite and stochastic models for induced pluripotent stem cell generation. Nature 460(7251):49–52

    PubMed  CAS  Google Scholar 

  • Yamanaka S (2009b) A fresh look at iPS cells. Cell 137(1):13–17

    PubMed  CAS  Google Scholar 

  • Yan X et al (2010) iPS cells reprogrammed from human mesenchymal-like stem/progenitor cells of dental tissue origin. Stem Cells Dev 19(4):469–480

    PubMed  CAS  Google Scholar 

  • Ye L et al (2009a) Induced pluripotent stem cells offer new approach to therapy in thalassemia and sickle cell anemia and option in prenatal diagnosis in genetic diseases. Proc Natl Acad Sci USA 106(24):9826–9830

    PubMed  CAS  Google Scholar 

  • Ye Z et al (2009b) Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood 114(27):5473–5480

    PubMed  CAS  Google Scholar 

  • Ying QL, Smith AG (2003) Defined conditions for neural commitment and differentiation. Methods Enzymol 365:327–341

    PubMed  CAS  Google Scholar 

  • Yoshida Y, Yamanaka S (2010) Recent stem cell advances: induced pluripotent stem cells for disease modeling and stem cell-based regeneration. Circulation 122(1):80–87

    PubMed  Google Scholar 

  • Yu J et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920

    PubMed  CAS  Google Scholar 

  • Zhang J et al (2009) Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res 104(4):e30–e41

    PubMed  CAS  Google Scholar 

  • Zhou J et al (2010) High-Efficiency Induction of Neural Conversion in hESCs and hiPSCs with a Single Chemical Inhibitor of TGF-beta Superfamily Receptors. Stem Cells 28(10):1741–1750

    PubMed  CAS  Google Scholar 

  • Zhu H et al (2011) Investigating monogenic and complex diseases with pluripotent stem cells. Nat Rev Genet 12(4):266–275

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sibel Yildirim .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 The Author(s)

About this chapter

Cite this chapter

Yildirim, S. (2012). Modeling Disease in a Dish. In: Induced Pluripotent Stem Cells. SpringerBriefs in Stem Cells. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2206-8_5

Download citation

Publish with us

Policies and ethics