Skip to main content

Pluripotent Cells

  • Chapter
  • First Online:
  • 1837 Accesses

Part of the book series: SpringerBriefs in Stem Cells ((BRIEFSSTEM))

Abstract

The defining properties of ESCs are the ability to proliferate indefinitely without commitment to any cell lineages (self-renewal) and the capacity to differentiate into cell lineages from three germ layers (pluripotency). ESCs were the first pluripotent cells isolated from normal embryos derived from the inner cell mass (ICM) of preimplantation embryos. Mouse ESCs (mESCs) contribute cells to the three germ layers and to the germline of chimeric animals when injected into mouse blastocysts. However, there are distinguishing molecular and biological characteristics between ESCs and their in vivo counterparts of the ICM. Cells of the ICM do not self-renew, and they have globally hypomethylated genome, whereas, ESCs have unlimited proliferation potential and they have characteristically highly methylated genome.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Avilion AA et al (2003) Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 17(1):126–140

    Article  PubMed  CAS  Google Scholar 

  • Bao S et al (2009) Epigenetic reversion of post-implantation epiblast to pluripotent embryonic stem cells. Nature 461(7268):1292–1295

    Article  PubMed  CAS  Google Scholar 

  • Brons IG et al (2007) Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448(7150):191–195

    Article  PubMed  CAS  Google Scholar 

  • Chambers I, Tomlinson SR (2009) The transcriptional foundation of pluripotency. Development 136(14):2311–2322

    Article  PubMed  CAS  Google Scholar 

  • Chou YF et al (2008) The growth factor environment defines distinct pluripotent ground states in novel blastocyst-derived stem cells. Cell 135(3):449–461

    Article  PubMed  CAS  Google Scholar 

  • Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156

    Article  PubMed  CAS  Google Scholar 

  • Guan K et al (2006) Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 440(7088):1199–1203

    Article  PubMed  CAS  Google Scholar 

  • Guo G et al (2009) Klf4 reverts developmentally programmed restriction of ground state pluripotency. Development 136(7):1063–1069

    Article  PubMed  CAS  Google Scholar 

  • Hanna J et al (2010a) Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proc Natl Acad Sci U S A 107(20):9222–9227

    Article  PubMed  CAS  Google Scholar 

  • Hanna J et al (2010b) Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proc Natl Acad Sci U S A 107(20):9222–9227

    Article  PubMed  CAS  Google Scholar 

  • James D et al (2005) TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development 132(6):1273–1282

    Article  PubMed  CAS  Google Scholar 

  • Kanatsu-Shinohara M et al (2004) Generation of pluripotent stem cells from neonatal mouse testis. Cell 119(7):1001–1012

    Article  PubMed  CAS  Google Scholar 

  • Lengner CJ et al (2010) Derivation of pre-X inactivation human embryonic stem cells under physiological oxygen concentrations. Cell 141(5):872–883

    Article  PubMed  CAS  Google Scholar 

  • Matsui Y et al (1992) Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70(5):841–847

    Article  PubMed  CAS  Google Scholar 

  • Meissner A et al (2008) Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454(7205):766–770

    PubMed  CAS  Google Scholar 

  • Nagy A et al (1990) Embryonic stem cells alone are able to support fetal development in the mouse. Development 110(3):815–821

    PubMed  CAS  Google Scholar 

  • Najm FJ et al (2011) Isolation of epiblast stem cells from preimplantation mouse embryos. Cell Stem Cell 8(3):318–325

    Article  PubMed  CAS  Google Scholar 

  • Nichols J, Smith A (2009) Naive and primed pluripotent states. Cell Stem Cell 4(6):487–492

    Article  PubMed  CAS  Google Scholar 

  • Nichols J et al (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95(3):379–391

    Article  PubMed  CAS  Google Scholar 

  • Niwa H et al (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24(4):372–376

    Article  PubMed  CAS  Google Scholar 

  • Santos F et al (2002) Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol 241(1):172–182

    Article  PubMed  CAS  Google Scholar 

  • Silva J, Smith A (2008) Capturing pluripotency. Cell 132(4):532–536

    Article  PubMed  CAS  Google Scholar 

  • Surani MA (1999) Reprogramming a somatic nucleus by trans-modification activity in germ cells. Semin Cell Dev Biol 10(3):273–277

    Article  PubMed  CAS  Google Scholar 

  • Tesar PJ et al (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448(7150):196–199

    Article  PubMed  CAS  Google Scholar 

  • Theunissen TW, Silva JC (2011) Switching on pluripotency: a perspective on the biological requirement of Nanog. Philos Trans R Soc Lond B Biol Sci 366(1575):2222–2229

    Article  PubMed  CAS  Google Scholar 

  • Thomson JA et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  PubMed  CAS  Google Scholar 

  • Wilmut I et al (2011) The evolving biology of cell reprogramming. Philos Trans R Soc Lond B Biol Sci 366(1575):2183–2197

    Article  PubMed  CAS  Google Scholar 

  • Ying QL et al (2003) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115(3):281–292

    Article  PubMed  CAS  Google Scholar 

  • Ying QL et al (2008) The ground state of embryonic stem cell self-renewal. Nature 453(7194):519–523

    Article  PubMed  CAS  Google Scholar 

  • Young RA (2011) Control of the embryonic stem cell state. Cell 144(6):940–954

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sibel Yildirim .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 The Author(s)

About this chapter

Cite this chapter

Yildirim, S. (2012). Pluripotent Cells. In: Induced Pluripotent Stem Cells. SpringerBriefs in Stem Cells. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2206-8_2

Download citation

Publish with us

Policies and ethics