Skip to main content

High Resolution ExitWave Restoration

  • Chapter
  • First Online:
Book cover Modeling Nanoscale Imaging in Electron Microscopy

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

We review the use of restoration methods that recover the complex specimen exit wave from a suitably conditioned data set of high resolution transmission electron microscope images. Various levels of theory underlying the post-acquisition processing required are described together with the requirements for aberration measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The origin of the use of real space order when describing an aberration coefficient originates from the ray-optical theory of Seidel aberrations which are described in terms of displacements of ray-path intersections with the image plane. As these displacements are proportional to the gradient of the wave aberration function, an nth order Seidel aberration corresponds to a term of order n + 1 in W. As an example, the image aberration for defocus is linear in angle and is hence described as a first-order aberration, whereas the image aberration for spherical aberration is cubic in angle and is hence described as a third-order aberration.

  2. 2.

    As the apparent strength of the tilt coils is often sensitive to the condenser lens and objective lens pre-field excitation this must be constant between calibration and experiment.

  3. 3.

    Current reversal centre alignment involves reversing the current of the objective lens but is no longer practicable with the strong lenses used in modern instruments.

References

  1. Schiske P (1968) Image reconstruction by means of focal series. Fourth Regional Congress on Electron Microscopy, Rome

    Google Scholar 

  2. Saxton WO (1988) Accurate atom positions from focal and tilted beam series of high resolution electron micrographs. Scanning Microsc Suppl. 2(SUPPL.):213–224

    Google Scholar 

  3. Saxton WO (1994) What is the focus variation method—is it new—is it direct. Ultramicroscopy 55(2):171–181

    Article  Google Scholar 

  4. Coene WMJ, Janssen G et al (1992) Phase retrieval through focus variation for ultra-resolution in field-emission transmission electron-microscopy. Phys Rev Lett 69(26):3743–3746

    Article  CAS  Google Scholar 

  5. Van Dyck D, De Beeck MO et al (1993) A new approach to object wave-function reconstruction in electron-microscopy. Optik 93(3):103–107

    Google Scholar 

  6. op de Beeck M, Van Dyck D et al (1996) Wave function reconstruction in HRTEM: the parabola method. Ultramicroscopy 64(1–4):167–183

    Google Scholar 

  7. Lichte H, Formanek P et al (2007) Electron holography: applications to materials questions. Ann Rev Mater Res 37(1):539–588

    Article  CAS  Google Scholar 

  8. Midgley PA (2001) An introduction to off-axis electron holography. Micron 32(2):167–184

    Article  Google Scholar 

  9. Scherzer O (1936) Über einige Fehler von Elektronenlinsen. Zeitschrift für Physik 101:593–603

    Article  Google Scholar 

  10. Haider M, Rose H et al (1998) A spherical-aberration-corrected 200 kV transmission electron microscope. Ultramicroscopy 75(1):53–60

    Article  CAS  Google Scholar 

  11. Rose H (1990) Outline of a spherically corrected semiaplanatic medium-voltage transmission electron microscope. Optik 85(1):19–24

    Google Scholar 

  12. Urban K, Kabius B et al (1999) A way to higher resolution: spherical-aberration correction in a 200 kV transmission electron microscope. J Electron Microsc 48(6):821–826

    CAS  Google Scholar 

  13. Hetherington CJD, Chang LYS et al (2008) High-resolution TEM and the application of direct and indirect aberration correction. Microsc Microanal 14:60–67

    Article  CAS  Google Scholar 

  14. Tillmann K, Thust A et al (2004) Spherical aberration correction in tandem with exit-plane wave function reconstruction: interlocking tools for the atomic scale imaging of lattice defects in GaAs. Microscopy Microanal 10(2):185–198

    Article  CAS  Google Scholar 

  15. Hawkes PW (2007) “Aberration correction” in Science of Microscopy, Vol 1. Springer, p 696–747

    Google Scholar 

  16. Hawkes PW, Kasper E (1989,1994) Principles of electron optics. Academic, London

    Google Scholar 

  17. Kirkland AI, Meyer RR et al (2006) Local measurement and computational refinement of aberrations for HRTEM. Microsc Microanal 12(6):461–468

    Article  CAS  Google Scholar 

  18. Krivanek OL, Dellby N et al (1999) Towards sub-angstrom electron beams. Ultramicroscopy 78(1–4):1–11

    Article  CAS  Google Scholar 

  19. Typke D, Dierksen K (1995) Determination of image aberrations in high-resolution electron microscopy using diffractogram and cross-correlation methods. Optik 99(4):155–166

    Google Scholar 

  20. Born M, Wolf E (1980) Principles of optics. Pergamon, Oxford

    Google Scholar 

  21. Kirkland EJ (1998) Advanced computing in electron microscopy. Plenum Press, New York and London

    Google Scholar 

  22. Reimer L (1997, 2008) Transmission electron microscopy. Springer

    Google Scholar 

  23. Frank J (1973) The envelope of electron microscopic transfer functions for partially coherent illumination. Optik 38(5):519–536

    Google Scholar 

  24. Hawkes PW (1978) Coherence in electron optics. Adv Opt Electron Microsc 7:101–184

    Google Scholar 

  25. Wade RH, Frank J (1977) Electron microscope transfer functions for partially coherent axial illumination and chromatic defocus spread. Optik 49:81–92

    Google Scholar 

  26. Kirkland AI, Nellist PD et al (2008) Chapter 8 In Aberration-corrected imaging in conventional transmission electron microscopy and scanning transmission electron microscopy. Advances in imaging and electron physics, Vol 153. Elsevier, pp 283–325

    Google Scholar 

  27. Haigh SJ, Sawada H et al (2009) Atomic structure imaging beyond conventional resolution limits in the transmission electron microscope. Phys Rev Lett 103(12):126101–126104

    Article  Google Scholar 

  28. Haigh SJ, Sawada H et al (2009) Optimal tilt magnitude determination for aberration-corrected super resolution exit wave function reconstruction. Philos Trans R Soc Lond A 367(1903):3755–3771

    Article  Google Scholar 

  29. Kirkland AI, Saxton WO et al (1997) Multiple beam tilt microscopy for super resolved imaging. J Electron Microsc 46(1):11–22

    CAS  Google Scholar 

  30. Kirkland AI, Saxton WO et al (1995) Super-resolution by aperture synthesis: tilt series reconstruction in CTEM. Ultramicroscopy 57(4):355–374

    Article  CAS  Google Scholar 

  31. Hopkins HH (1951) The concept of partial coherence in optics. Proc R Soc Lond A Math Phys Sci 208(1093):263–277

    Article  Google Scholar 

  32. Hopkins HH (1953) On the diffraction theory of optical images. Proc R Soc Lond A Math Phys Sci 217(1130):408–432

    Article  Google Scholar 

  33. Hanssen KJ, Trepte L (1971) Influence of voltage and current fluctuations and of a finite energy width of electrons on contrast and resolution in electron microscopy. Optik 32(6):519

    Google Scholar 

  34. Ishizuka K, Fujiyoshi Y et al (1979) Effects of the envelope function on high-resolution electron-microscope images. J Electron Microsc 28(3):226–226

    Google Scholar 

  35. Ishizuka K (1980) Contrast transfer of crystal images in TEM. Ultramicroscopy 5(1–3):55–65

    Article  CAS  Google Scholar 

  36. Meyer RR, Kirkland AI (2000) Characterisation of the signal and noise transfer of CCD cameras for electron detection. Microsc Res Tech 49(3):269–280

    Article  CAS  Google Scholar 

  37. Meyer RR, Kirkland AI et al (2000) Experimental characterisation of CCD cameras for HREM at 300 kV. Ultramicroscopy 85(1):9–13

    Article  CAS  Google Scholar 

  38. Kirkland AI, Chang LY (2005) An assessment of imaging models for exit wave restoration. Microsc Microanal 11(SupplementS02):2152–2153

    Google Scholar 

  39. Coene WMJ, Thust A et al (1996) Maximum-likelihood method for focus-variation image reconstruction in high resolution transmission electron microscopy. Ultramicroscopy 64(1–4):109–135

    Article  CAS  Google Scholar 

  40. Kirkland EJ (1984) Improved high resolution image processing of bright field electron micrographs. I. Theory. Ultramicroscopy 15(3):151–172

    Article  Google Scholar 

  41. Kirkland EJ, Siegel BM et al (1982) Non-linear high-resolution image-processing of conventional transmission electron-micrographs. 2. Experiment. Ultramicroscopy 9(1–2):65–74

    Google Scholar 

  42. Cowley JM, Moodie AF (1957) The scattering of electrons by atoms and crystals. I. A new theoretical approach. Acta Crystallogr 10:609–619

    CAS  Google Scholar 

  43. Cowley JM, Moodie AF (1962) The scattering of electrons by thin crystals. J Phys Soc Jpn 17(suppl. B.II):86–91

    Google Scholar 

  44. Spence JCH (1988) Experimental high resolution electron microscopy. Oxford University Press, New York

    Google Scholar 

  45. Grinton GR, Cowley JM (1971) Phase and amplitude contrast in electron micrographs of biological materials. Optik - Int J Light Electron Opt 34:221

    Google Scholar 

  46. Yoshioka H (1957) The effect of inelastic waves on electron diffraction. J Phys Soc Jpn 12:618

    Article  CAS  Google Scholar 

  47. Li FH (1998) Image processing based on the combination of high-resolution electron microscopy and electron diffraction. Microsc Res Tech 40(2):86–100

    Article  CAS  Google Scholar 

  48. Tang D, Li FH (1988) A method of image-restoration for pseudo-weak-phase objects. Ultramicroscopy 25(1):61–67

    Article  Google Scholar 

  49. Honda T, Tomita T et al (1994) Field emission ultrahigh-resolution analytical electron microscope. Ultramicroscopy 54(2–4):132–144

    Article  CAS  Google Scholar 

  50. Otten MT, Coene WMJ (1993) High-resolution imaging on a field emission TEM. Ultramicroscopy 48(1–2):77–91

    Article  Google Scholar 

  51. Erasmus S, Smith K (1982) An automatic focusing and astigmatism correction system for the SEM and CTEM. J Microsc 127:185–199

    Article  CAS  Google Scholar 

  52. Saxton WO, Smith DJ et al (1983) Procedures for focusing, stigmating and alignment in high-resolution electron-microscopy. J Microsc 130(MAY):187–201

    Article  Google Scholar 

  53. Fu Q, Lichte H et al (1991) Correction of aberrations of an electron microscope by means of electron holography. Phys Rev Lett 67(17):2319–2322

    Article  Google Scholar 

  54. Tang D, Zandbergen HW et al (1996) Fine-tuning of the focal residue in exit-wave reconstruction. Ultramicroscopy 64(1–4):265–276

    Article  CAS  Google Scholar 

  55. Lehmann M (2000) Determination and correction of the coherent wave aberration from a single off-axis electron hologram by means of a genetic algorithm. Ultramicroscopy 85(3):165–182

    Article  CAS  Google Scholar 

  56. Koster AJ, van den Bos A et al (1987) An autofocus method for a TEM. Ultramicroscopy 21(3):209–221

    Article  Google Scholar 

  57. Koster AJ (1989) Practical autotuning of a transmission electron microscope. Ultramicroscopy 31(4):473–474

    Article  Google Scholar 

  58. Saxton WO, Chand G et al (1994) Accurate determination and compensation of lens aberrations in high resolution EM. Electron Microscopy 1994, Vol 1—Interdisciplinary Developments and Tools: 203–204

    Google Scholar 

  59. Krivanek OL, Leber ML (1994). Autotuning for 1 angstrom resolution. Electron Microsc 1:157–158

    Google Scholar 

  60. Thon F (1966) Imaging properties of the electron microscope near the theoretical limit of resolution. 6th Intern. congr. on electron microscopy, Kyoto

    Google Scholar 

  61. Coene WMJ, Denteneer TJJ (1991) Improved methods for the determination of the spherical-aberration coefficient in high-resolution electron-microscopy from micrographs of an amorphous object. Ultramicroscopy 38(3–4):225–233

    Article  Google Scholar 

  62. Krivanek OL (1976) Method for determining coefficient of spherical aberration from a single electron micrograph. Optik 45(1):97–101

    Google Scholar 

  63. Typke D, Köstler D (1977) Determination of the wave aberration of electron lenses from superposition diffractograms of images with differently tilted illumination. Ultramicroscopy 2:285–295

    Article  CAS  Google Scholar 

  64. Zemlin F, Weiss K et al (1978) Coma-free alignment of high resolution electron microscopes with the aid of optical diffractograms. Ultramicroscopy 3:49–60

    Article  Google Scholar 

  65. Smith DJ, Saxton WO et al (1983) The importance of beam alignment and crystal tilt in high-resolution electron-microscopy. Ultramicroscopy 11(4):263–281

    Article  Google Scholar 

  66. Meyer RR, Kirkland AI et al (2002) A new method for the determination of the wave aberration function for high resolution TEM 1. Measurement of the symmetric aberrations. Ultramicroscopy 92(2):89–109

    CAS  Google Scholar 

  67. Meyer RR, Kirkland AI et al (2004) A new method for the determination of the wave aberration function for high-resolution TEM. 2. Measurement of the antisymmetric aberrations. Ultramicroscopy 99(2–3):115–123

    Google Scholar 

  68. Saxton WO (1995) Observation of lens aberrations for very high-resolution electron-microscopy. 1. Theory. J Microsc 179:201–213

    Article  Google Scholar 

  69. Baba N, Oho E, Kanaya K (1987) An algorithm for online digital image processing for assisting automatic focussing and astigmatism correction in electron microscopy. Scanning Microscopy 1(4):1507–1514

    Google Scholar 

  70. Fan G, Krivanek O (1990) Computer controlled HREM alignment using automated diffractogram analysis. In: Peachy L, Williams DJS (ed) 12th ICEM, Vol 1. San Francisco Press, Seattle, pp 332–333

    Google Scholar 

  71. Uhlemann S, Haider M (1998) Residual wave aberrations in the first spherical aberration corrected transmission electron microscope. Ultramicroscopy 72(3–4):109–119

    Article  CAS  Google Scholar 

  72. Van Heel M, Schatz M et al (1992) Correlation-functions revisited. Ultramicroscopy 46(1–4):307–316

    Article  Google Scholar 

  73. Kuglin CD, Hines DC (1975) The phase correlation image alignment method. Proceedings of the IEEE 1975 International Conference on Cybernetics and Society, New York

    Google Scholar 

  74. Wiener N (1949) Extrapolation, interpolation, and smoothing of stationary time series. Wiley, New York

    Google Scholar 

  75. Meyer RR, Kirkland AI (1998) The effects of electron and photon scattering on signal and noise transfer properties of scintillators in CCD cameras used for electron detection. Ultramicroscopy 75(1):23–33

    Article  CAS  Google Scholar 

  76. Hashimoto H, Endoh H et al (1998) Pseudo-aberration free focus condition for atomic resolution electron microscope images. Micron 29(2–3):113–121

    Article  CAS  Google Scholar 

  77. O’Keefe MA, Nelson EC et al (2001) Sub-angstrom resolution of atomistic structures below 0.8 angstrom. Philos Mag B 81(11):1861–1878

    Google Scholar 

  78. Chang LY, Kirkland AI (2006) Comparisons of linear and nonlinear image restoration. Microsc Microanal 12(6):469–475

    Article  CAS  Google Scholar 

  79. Allen LJ, McBride W et al (2004) Exit wave reconstruction at atomic resolution. Ultramicroscopy 100(1–2):91–104

    Article  CAS  Google Scholar 

  80. Allen LJ, McBride W et al (2004) Investigation of the effects of partial coherence on exit wave reconstruction. J Microsc 216:70–75

    Article  CAS  Google Scholar 

  81. Chang LY, Meyer RR et al (2005) Calculation of HREM image intensity using Monte Carlo integration. Ultramicroscopy 104:271–280

    Article  CAS  Google Scholar 

  82. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2002) Numercial recipes in C\(++\): The art of scientific computing. Cambridge University Press, Cambridge.

    Google Scholar 

  83. Teague MR (1983) Deterministic phase retrieval—a green-function solution. J Opt Soc Am 73(11):1434–1441

    Article  Google Scholar 

  84. Nugent KA, Gureyev TE et al (1996) Quantitative phase imaging using hard X-rays. Phys Rev Lett 77(14):2961–2964

    Article  CAS  Google Scholar 

  85. Paganin D, Mayo SC et al (2002) Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J Microsc 206:33–40

    Article  CAS  Google Scholar 

  86. Streibl N (1985) Three-dimensional imaging by a microscope. J Opt Soc Am A 2(2):121–127

    Article  Google Scholar 

  87. McMahon PJ, Barone-Nugent ED et al (2002) Quantitative phase-amplitude microscopy II: differential interference contrast imaging for biological TEM. J Microsc 206(3):204–208

    Article  CAS  Google Scholar 

  88. Bajt S, Barty A et al (2000) Quantitative phase-sensitive imaging in a transmission electron microscope. Ultramicroscopy 83(1–2):67–73

    Article  CAS  Google Scholar 

  89. Beleggia M, Schofield MA et al (2004) On the transport of intensity technique for phase retrieval. Ultramicroscopy 102(1):37–49

    Article  CAS  Google Scholar 

  90. Martin AV, Chen FR et al (2006) Spatial incoherence in phase retrieval based on focus variation. Ultramicroscopy 106(10):914–924

    Article  CAS  Google Scholar 

  91. Ishizuka K, Allman B (2005) Phase measurement of atomic resolution image using transport of intensity equation. J Electron Microsc 54(3):191–197

    Article  CAS  Google Scholar 

  92. Hsieh WK, Chen FR et al (2004) Resolution extension and exit wave reconstruction in complex HREM. Ultramicroscopy 98(2–4):99–114

    Article  CAS  Google Scholar 

  93. Chang LY, Kirkland AI et al (2006) On the importance of fifth-order spherical aberration for a fully corrected electron microscope. Ultramicroscopy 106(4–5):301–306

    Article  CAS  Google Scholar 

  94. Petersen TC, Keast VJ (2007) Astigmatic intensity equation for electron microscopy based phase retrieval. Ultramicroscopy 107(8):635–643

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angus I. Kirkland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Haigh, S.J., Kirkland, A.I. (2012). High Resolution ExitWave Restoration. In: Vogt, T., Dahmen, W., Binev, P. (eds) Modeling Nanoscale Imaging in Electron Microscopy. Nanostructure Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2191-7_3

Download citation

Publish with us

Policies and ethics