Skip to main content

The Effect of Diet on Gut Microbiota in Humans Living in Different Environments: A Metagenomic Approach

  • Chapter
  • First Online:
Genomics Applications for the Developing World

Part of the book series: Advances in Microbial Ecology ((AMIE))

  • 1184 Accesses

Abstract

In the twentieth century, our knowledge of the gut microbiota was constrained by the ability to describe and study the biological functions of less than a 100 cultivable bacteria (Finegold et al. 1983). The species we described until 2000 were also the most abundant ones, and given the special attention of funding agencies toward pathogens, we fundamentally ignored the genome to functions relation for the vast majority of our commensal, except in the case of a handful of bacterial species used in food production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adlerberth I et al (1998) High turnover rate of Escherichia coli strains in the intestinal flora of infants in Pakistan. Epidemiol Infect 121:587–598

    Google Scholar 

  • Andersson AF et al (2008) Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS One 3:e2836

    Google Scholar 

  • Arumugam M et al (2011) Enterotypes of the human gut microbiome. Nature 473(7346):174–180

    Google Scholar 

  • Bäckhed F et al (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101(44):15718–15723

    Google Scholar 

  • Bäckhed F et al (2005) Host-bacterial mutualism in the human intestine. Science 307:1915–1920

    Google Scholar 

  • Baumann P (2005) Biology bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu Rev Microbiol 59:155–189

    Google Scholar 

  • Binder HJ (2010) Role of colonic short-chain fatty acid transport in diarrhea. Annu Rev Physiol 72:297–313

    Google Scholar 

  • Blaser MJ (2006) Who are we? Indigenous microbes and the ecology of human diseases. EMBO Rep 7:956–960

    Google Scholar 

  • Buchner P (1965) Endosymbiosis of animals with plant microorganisms. Wiley, New York

    Google Scholar 

  • Burkitt DP (1973) Epidemiology of large bowel disease: the role of fibre. Proc Nutr Soc 32:145–149

    Google Scholar 

  • Chen X et al (1999) Concordant evolution of a symbiont with its host insect species: molecular phylogeny of genus Glossina and its bacteriome-associated endosymbiont, Wigglesworthia glossinidia. J Mol Evol 48:49–58

    Google Scholar 

  • Cole JR et al (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37(Database issue):D141–D145

    Google Scholar 

  • Cordain L et al (2005) Origins and evolution of the Western diet: health implications for the 21st century. Am J Clin Nutr 81:341–354

    Google Scholar 

  • Cummings JH, Branch WJ et al (1987) Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28:1221–1227

    Google Scholar 

  • De Filippo C et al (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 107(33):14691–14696

    Google Scholar 

  • Eckburg PB et al (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638

    Google Scholar 

  • Elango R et al (2009) Amino acid requirements in humans: with a special emphasis on the metabolic availability of amino acids. Amino Acids 37:19–27

    Google Scholar 

  • Finegold SM et al (1983) In: Hentges DJ (ed) Human intestinal microflora in health and disease. Academic, New York, pp 3–31

    Google Scholar 

  • Gao X et al (2009) Metabolite analysis of human fecal water by gas chromatography/mass spectrometry with ethyl chloroformate derivatization. Anal Biochem 15(393):163–175

    Google Scholar 

  • Gill SR, Deboy RT et al (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359

    Google Scholar 

  • Hehemann JH et al (2010) Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464:908–912

    Google Scholar 

  • Holdeman LV et al (1976) Human fecal flora: variation in bacterial composition within individuals and a possible effect of emotional stress. Appl Environ Microbiol 31(3):359–375

    Google Scholar 

  • Hosokawa T et al (2006) Strict host-symbiont cospeciation and reductive genome evolution in insect gut bacteria. PLoS Biol 4:1841–1851

    Google Scholar 

  • Ley RE et al (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023

    Google Scholar 

  • Ley RE et al (2008) Evolution of mammals and their gut microbes. Science 20:1647–1651

    Google Scholar 

  • Li H et al (2007) Pharmacometabonomic phenotyping reveals different responses to xenobiotic intervention in rats. J Proteome Res 6:1364–1370

    Google Scholar 

  • Lo N et al (2003) Evidence for cocladogenesis between diverse dictyopteran lineages and their intracellular endosymbionts. Mol Biol Evol 20:907–913

    Google Scholar 

  • Luca F et al (2010) Evolutionary adaptations to dietary changes. Annu Rev Nutr 30:291–314

    Google Scholar 

  • Martin FP et al (2007) A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model. Mol Syst Biol 3:112

    Google Scholar 

  • McKenna P et al (2008) The macaque gut microbiome in health, lentiviral infection, and chronic enterocolitis. PLoS Pathog 4:e20

    Google Scholar 

  • McNeil NI (1984) The contribution of the large intestine to energy supplies in man. Am J Clin Nutr 39:338–342

    Google Scholar 

  • Metzker ML (2010) Sequencing technologies – the next generation. Nat Rev Genet 11(1):31–46

    Google Scholar 

  • Mira A et al (2006) The Neolithic revolution of bacterial genomes. Trends Microbiol 14:200–206

    Google Scholar 

  • Mitsuoka T, Hayakawa K (1973) The fecal flora in man. Composition of the fecal flora of various age groups. Zentbl Bakteriol Orig A 223:333–342

    Google Scholar 

  • Moore WEC, Holdeman LV (1974) Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl Microbiol 27(5):961–979

    Google Scholar 

  • Mueller S et al (2006) Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl Environ Microbiol 72(2):1027–1033

    Google Scholar 

  • Nicholson JK (2006) Global systems biology, personalized medicine and molecular epidemiology. Mol Syst Biol 2:52

    Google Scholar 

  • Nicholson JK et al (2005) Gut microorganisms, mammalian metabolism and personalized health care. Nat Rev Microbiol 3(5):431–438

    Google Scholar 

  • Petrosino JF et al (2009) Metagenomic pyrosequencing and microbial identification. Clin Chem 55(5):856–866

    Google Scholar 

  • Qin J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65

    Google Scholar 

  • Rook GAW, Brunet LR (2005) Microbes, immunoregulation and the gut. Gut 54:317–320

    Google Scholar 

  • Scheppach W (1994) Effects of short chain fatty acids on gut morphology and function. Gut 35(1 Suppl):S35–S38

    Google Scholar 

  • Schrder D et al (1996) Intracellular endosymbiotic bacteria of Camponotus species (carpenter ants): systematics, evolution and ultrastructural characterization. Mol Microbiol 21:479–489

    Google Scholar 

  • Shigenobu S et al (2000) Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407:81–86

    Google Scholar 

  • Sonnenburg JL (2010) Microbiology: genetic pot luck. Nature 464(7290):837–838

    Google Scholar 

  • Soret R et al (2010) Short-chain fatty acids regulate the enteric neurons and control gastrointestinal motility in rats. Gastroenterology 138:1772–1782

    Google Scholar 

  • Strachan DP (1989) Hay fever, hygiene, and household size. Br Med J 299:1259–1260

    Google Scholar 

  • Topping DL et al (2001) Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev 81(3):1031–1064

    Google Scholar 

  • Tuohy KM et al (2009) Studying the human gut microbiota in the trans-omics era – focus on metagenomics and metabonomics. Curr Pharm Des 15(13):1415–1427

    Google Scholar 

  • Turnbaugh PJ et al (2007) The human microbiome project. Nature 449:804–810

    Google Scholar 

  • Turnbaugh PJ et al (2009a) A core gut microbiome in obese and lean twins. Nature 457:480–484

    Google Scholar 

  • Turnbaugh PJ et al (2009b) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1:6ra14

    Google Scholar 

  • Winker S, Woese CR (1991) A definition of the domains archaea, bacteria and eucarya in terms of small subunit ribosomal RNA characteristics. Syst Appl Microbiol 14:305–310

    Google Scholar 

  • Wolever TM et al (1989) Effect of rectal infusion of short chain fatty acids in human subjects. Am J Gastroenterol 84:1027–1033

    Google Scholar 

  • Wolever TM et al (1991) Interaction between colonic acetate and propionate in humans. Am J Clin Nutr 53:681–687

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlotta De Filippo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

De Filippo, C., Cavalieri, D., Lionetti, P. (2012). The Effect of Diet on Gut Microbiota in Humans Living in Different Environments: A Metagenomic Approach. In: Nelson, K., Jones-Nelson, B. (eds) Genomics Applications for the Developing World. Advances in Microbial Ecology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2182-5_17

Download citation

Publish with us

Policies and ethics