Skip to main content

Communication Protocols

  • Chapter
  • First Online:
Low-Power Wireless Sensor Networks

Abstract

Network protocols are typically divided into several distinct layers according to their responsibilities, which together form a protocol stack. Each layer has precisely defined interfaces, which permits flexible updates and changes in the software and hardware implementations in a modular manner. A WSN communication protocol stack comprises typically MAC, routing, and transport protocols. This chapter describes the design concepts and typical approaches in these protocol layers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buettner, M., Yee, G., Anderson, E., Han, R.: X-MAC: A short preamble MAC protocol for duty-cycled wireless sensor networks. In: Proc. 4th ACMConf. Embedded Networked Sensor Systems (SenSys’06), pp. 307–320. Boulder, Colorado, USA (2006)

    Google Scholar 

  2. Colvin, A.: CSMA with collision avoidance. Computer Communications 6(5), 227–235 (1983)

    Article  Google Scholar 

  3. Deng, J., Han, Y.S., Chen, P.N., Varshney, P.K.: Optimal transmission range for wireless ad hoc networks based on energy efficiency. IEEE Transactions on Communications 55(9), 1772– 1782 (2007)

    Article  Google Scholar 

  4. Guo, C., Zhong, L., Rabaey, J.: Low power distributed MAC for ad hoc sensor radio networks. In: Global Telecommunications Conf. (GLOBECOM’01), vol. 5, pp. 2944–2948. San Antonio, TX, USA (2001)

    Google Scholar 

  5. IEEE 802.15.4: IEEE Standard for Information Technology—Telecommunications and Information Exchange Between Systems—Local and Metropolitan Area Networks—Specific Requirements—Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPAN) (2006)

    Google Scholar 

  6. Al Karaki, J.N., Kamal, A.E.: Routing techniques in wireless sensor networks: A survey. IEEE Wireless Communications 11(6), 6–28 (2004)

    Article  Google Scholar 

  7. Karl, H., Willig, A.: Protocols and Architectures for Wireless Sensor Networks. John Wiley & Sons Ltd (2005)

    Google Scholar 

  8. Karp, B., Kung, H.T.: GPSR: Greedy perimeter stateless routing for wireless networks. In: Proc. 6th annual Int’l Conf. on mobile computing and networking (MobiCom’00), pp. 243– 254. Boston, MA, USA (2000)

    Google Scholar 

  9. Kohvakka, M.: Medium access control and hardware prototype designs for low-energy wireless sensor networks. Ph.D. thesis, Tampere University of Technology, Tampere, Finland (2009)

    Google Scholar 

  10. Kulik, J., Heinzelman, W., Balakrishnan, H.: Negotiation-based protocols for disseminating information in wireless sensor networks. Kluwer Wireless Networks 8(2), 169–185 (2002)

    Article  MATH  Google Scholar 

  11. Kuorilehto, M., Kohvakka, M., Suhonen, J., Hamalainen, P., Hannikainen, M., Hamalainen, T.D.: Ultra-Low Energy Wireless Sensor Networks in Practice - Theory, Realization and Deployment. John Wiley & Sons Ltd (2007)

    Google Scholar 

  12. Liu, J., Zhao, F., Petrovic, D.: Information-directed routing in ad hoc sensor networks. IEEE Journal on Selected Areas in Communications 23(4), 851–861 (2005)

    Article  Google Scholar 

  13. Niculescu, D.: Communication paradigms for sensor networks. IEEE Communications Magazine 43(3), 116–122 (2005)

    Article  MathSciNet  Google Scholar 

  14. Niculescu, D., Nath, B.: Trajectory based forwarding and its applications. In: Proc. 9th annual Int’l Conf. on Mobile computing and networking (MobiCom’03), pp. 260–272. San Diego, CA, USA (2003)

    Google Scholar 

  15. Polastre, J., Hill, J., Culler, D.: Versatile low power media access for wireless sensor networks. In: Proc. 2nd Internation Conf. on Embedded Networked Sensor Systems (Sensys’04), pp. 95– 107. Baltimore, MD, USA (2004)

    Google Scholar 

  16. Rappaport, T.: Wireless Communications - Principles and Practice, 2 edn., chap. 1. Prentice Hall (1996)

    Google Scholar 

  17. Roberts, L.: ALOHA packet system with and without slots and capture. ACM SIGCOMM Computer Communication Review 5(2), 28–42 (1975)

    Article  Google Scholar 

  18. Seidel, S., Rappaport, T.: 914 MHz path loss prediction models for indoor wireless communications in multifloored buildings. IEEE Trans. Antennas and Propagation 40(2), 207–217 (1992)

    Article  Google Scholar 

  19. Tian He, Stankovic, J.A., Lu, C., Abdelzaher, T.: SPEED: A stateless protocol for real-time communication in sensor networks. In: Proc. 23rd Int’l Conf. on Distributed Computing Systems, pp. 46–55. Providence, RI, USA (2003)

    Google Scholar 

  20. van Dam, T., Langendoen, K.: An adaptive energy-efficient MAC protocol for wireless sensor networks. In: Proc. 1st Int’l Conf. on Embedded Networked Sensor Systems (Sensys’03), pp. 171–180. Los Angeles, CA, USA (2003)

    Google Scholar 

  21. Wan, C.Y., Campbell, A.T., Krishnamurthy, L.: Pump-slowly, fetch-quickly (PSFQ): A reliable transport protocol for sensor networks. IEEE Journal on Selected Areas in Communications 23(4), 862–872 (2005)

    Article  Google Scholar 

  22. Warneke, B., Last, M., Leibowitz, B.,, Pister, K.S.J.: Smart dust: Communicating with a cubic-millimeter computer. Computer 34(1), 43–51 (2001)

    Article  Google Scholar 

  23. Ye, F., Zhong, G., Lu, S., Zhang, L.: GRAdient broadcast: a robust data delivery protocol for large scale sensor networks. Kluwer Wireless Networks 11(3), 285–298 (2005)

    Article  Google Scholar 

  24. Ye, W., Heidemann, J., Estrin, D.: An energy-efficient MAC protocol for wireless sensor networks.

    Google Scholar 

  25. In: Proc. 21st Annual Joint Conf. of the IEEE Computer and Communications Societies

    Google Scholar 

  26. (INFOCOM’02), vol. 3, pp. 1567–1576. New York, NY, USA (2002)

    Google Scholar 

  27. Yoon, S.: Power management in wireless sensor networks. North Carolina State University, PhD Thesis (2007)

    Google Scholar 

  28. Zhang, R., Gorce, J.M.: Optimal transmission range for minimum energy consumption in wireless sensor networks. In: Proc. IEEE Wireless Communications and Networking Conference (WCNC’08), pp. 757–762. Budapest, Hungary (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jukka Suhonen .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 The Author(s)

About this chapter

Cite this chapter

Suhonen, J., Kohvakka, M., Kaseva, V., Hämäläinen, T.D., Hännikäinen, M. (2012). Communication Protocols. In: Low-Power Wireless Sensor Networks. SpringerBriefs in Electrical and Computer Engineering(). Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2173-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-2173-3_4

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-2172-6

  • Online ISBN: 978-1-4614-2173-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics