Advertisement

Molecular Pathogenesis of Primary Hyperparathyroidism

  • Kelly Lauter
  • Andrew Arnold
Chapter

Abstract

The molecular pathogenesis of primary hyperparathyroidism has recently been elucidated to a great extent, but many questions remain. While the molecular genetics of parathyroid disease have notable specific features, the general principles of parathyroid tumorigenesis are shared with those of tumor formation in other neoplastic diseases.

Keywords

Hyperparathyroidism Cyclin D1 MEN1 CDKN1B CTNNB1 p27 B-Catenin RET CASR HRPT2 Parathyroid carcinoma Parathyroid adenoma Multiple endocrine neoplasia Calcium sensing receptor Hyperparathyroidism jaw tumor syndrome Familial isolated hyperparathyroidism Parafibromin Ectopic PTH secretion FHH Neonatal severe hyperparathyroidism 

References

  1. 1.
    Arnold A, Staunton CE, Kim HG, Gaz RD, Kronenberg HM. Monoclonality and abnormal parathyroid hormone genes in parathyroid adenomas. N Engl J Med. 1988;318(11):658–62.PubMedCrossRefGoogle Scholar
  2. 2.
    Arnold A, Brown MF, Urena P, Gaz RD, Sarfati E, Drueke TB. Monoclonality of parathyroid tumors in chronic renal failure and in primary parathyroid hyperplasia. J Clin Invest. 1995;95(5):2047–53.PubMedCrossRefGoogle Scholar
  3. 3.
    Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature. 1998;396(6712):643–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Marshall CJ. Tumor suppressor genes. Cell. 1991;64(2):313–26.PubMedCrossRefGoogle Scholar
  5. 5.
    Haber D, Harlow E. Tumour-suppressor genes: evolving definitions in the genomic age. Nat Genet. 1997;16(4):320–2.PubMedCrossRefGoogle Scholar
  6. 6.
    Koss LG. The mystery of chromosomal translocations in cancer. Cytogenet Genome Res. 2007;118(2–4):247–51.PubMedCrossRefGoogle Scholar
  7. 7.
    Knudson Jr AG. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA. 1971;68(4):820–3.PubMedCrossRefGoogle Scholar
  8. 8.
    Motokura T, Bloom T, Kim HG, et al. A novel cyclin encoded by a bcl1-linked candidate oncogene. Nature. 1991;350(6318):512–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Tashiro E, Tsuchiya A, Imoto M. Functions of cyclin D1 as an oncogene and regulation of cyclin D1 expression. Cancer Sci. 2007;98(5):629–35.PubMedCrossRefGoogle Scholar
  10. 10.
    Matsuda Y. Molecular mechanism underlying the functional loss of cyclin-dependent kinase inhibitors p16 and p27 in hepatocellular carcinoma. World J Gastroenterol. 2008;14(11): 1734–40.PubMedCrossRefGoogle Scholar
  11. 11.
    Williams ME, Swerdlow SH, Rosenberg CL, Arnold A. Chromosome 11 translocation breakpoints at the PRAD1/cyclin D1 gene locus in centrocytic lymphoma. Leukemia. 1993;7(2): 241–5.PubMedGoogle Scholar
  12. 12.
    Williams ME, Swerdlow SH, Rosenberg CL, Arnold A. Characterization of chromosome 11 translocation breakpoints at the bcl-1 and PRAD1 loci in centrocytic lymphoma. Cancer Res. 1992;52(19 Suppl):5541s–4s.PubMedGoogle Scholar
  13. 13.
    Rosenberg CL, Kim HG, Shows TB, Kronenberg HM, Arnold A. Rearrangement and overexpression of D11S287E, a candidate oncogene on chromosome 11q13 in benign parathyroid tumors. Oncogene. 1991;6(3):449–53.PubMedGoogle Scholar
  14. 14.
    Larsson C, Skogseid B, Oberg K, Nakamura Y, Nordenskjold M. Multiple endocrine neoplasia type 1 gene maps to chromosome 11 and is lost in insulinoma. Nature. 1988;332(6159):85–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Bystrom C, Larsson C, Blomberg C, et al. Localization of the MEN1 gene to a small region within chromosome 11q13 by deletion mapping in tumors. Proc Natl Acad Sci USA. 1990;87(5):1968–72.PubMedCrossRefGoogle Scholar
  16. 16.
    Heppner C, Kester MB, Agarwal SK, et al. Somatic mutation of the MEN1 gene in parathyroid tumours. Nat Genet. 1997;16(4):375–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Farnebo F, Teh BT, Kytola S, et al. Alterations of the MEN1 gene in sporadic parathyroid tumors. J Clin Endocrinol Metab. 1998;83(8):2627–30.PubMedCrossRefGoogle Scholar
  18. 18.
    Carling T, Correa P, Hessman O, et al. Parathyroid MEN1 gene mutations in relation to clinical characteristics of nonfamilial primary hyperparathyroidism. J Clin Endocrinol Metab. 1998;83:2960–3.PubMedCrossRefGoogle Scholar
  19. 19.
    Hannan FM, Nesbit MA, Christie PT, et al. Familial isolated primary hyperparathyroidism caused by mutations of the MEN1 gene. Nat Clin Pract Endocrinol Metab. 2008;4(1):53–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Lemos MC, Thakker RV. Multiple endocrine neoplasia type 1 (MEN1): analysis of 1336 mutations reported in the first decade following identification of the gene. Hum Mutat. 2008;29(1):22–32.PubMedCrossRefGoogle Scholar
  21. 21.
    Wautot V, Khodaei S, Frappart L, et al. Expression analysis of endogenous menin, the product of the multiple endocrine neoplasia type 1 gene, in cell lines and human tissues. Int J Cancer. 2000;85(6):877–81.PubMedCrossRefGoogle Scholar
  22. 22.
    Scacheri PC, Crabtree JS, Kennedy AL, et al. Homozygous loss of menin is well tolerated in liver, a tissue not affected in MEN1. Mamm Genome. 2004;15(11):872–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Guru SC, Goldsmith PK, Burns AL, et al. Menin, the product of the MEN1 gene, is a nuclear protein. Proc Natl Acad Sci USA. 1998;95(4):1630–4.PubMedCrossRefGoogle Scholar
  24. 24.
    Huang SC, Zhuang Z, Weil RJ, et al. Nuclear/cytoplasmic localization of the multiple endocrine neoplasia type 1 gene product, menin. Lab Invest. 1999;79(3):301–10.PubMedGoogle Scholar
  25. 25.
    Yang Y, Hua X. In search of tumor suppressing functions of menin. Mol Cell Endocrinol. 2007;265–266:34–41.PubMedCrossRefGoogle Scholar
  26. 26.
    Agarwal SK, Guru SC, Heppner C, et al. Menin interacts with the AP1 transcription factor JunD and represses JunD-activated transcription. Cell. 1999;96(1):143–52.PubMedCrossRefGoogle Scholar
  27. 27.
    Schnepp RW, Hou Z, Wang H, et al. Functional interaction between tumor suppressor menin and activator of S-phase kinase. Cancer Res. 2004;64(18):6791–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Heppner C, Bilimoria KY, Agarwal SK, et al. The tumor suppressor protein menin interacts with NF-kappaB proteins and inhibits NF-kappaB-mediated transactivation. Oncogene. 2001;20(36):4917–25.PubMedCrossRefGoogle Scholar
  29. 29.
    Sowa H, Kaji H, Kitazawa R, et al. Menin inactivation leads to loss of transforming growth factor beta inhibition of parathyroid cell proliferation and parathyroid hormone secretion. Cancer Res. 2004;64(6):2222–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Kaji H, Canaff L, Lebrun JJ, Goltzman D, Hendy GN. Inactivation of menin, a Smad3-interacting protein, blocks transforming growth factor type beta signaling. Proc Natl Acad Sci USA. 2001;98(7):3837–42.PubMedCrossRefGoogle Scholar
  31. 31.
    La P, Silva AC, Hou Z, et al. Direct binding of DNA by tumor suppressor menin. J Biol Chem. 2004;279(47):49045–54.PubMedCrossRefGoogle Scholar
  32. 32.
    Schnepp RW, Mao H, Sykes SM, et al. Menin induces apoptosis in murine embryonic fibroblasts. J Biol Chem. 2004;279(11):10685–91.PubMedCrossRefGoogle Scholar
  33. 33.
    Yokoyama A, Cleary ML. Menin critically links MLL proteins with LEDGF on cancer-associated target genes. Cancer Cell. 2008;14(1):36–46.PubMedCrossRefGoogle Scholar
  34. 34.
    Thakker RV. Multiple endocrine neoplasia. Horm Res. 2001;56 Suppl 1:67–72.PubMedCrossRefGoogle Scholar
  35. 35.
    Mulligan LM, Eng C, Healey CS, et al. Specific mutations of the RET proto-oncogene are related to disease phenotype in MEN 2A and FMTC. Nat Genet. 1994;6(1):70–4.PubMedCrossRefGoogle Scholar
  36. 36.
    Pausova Z, Soliman E, Amizuka N, et al. Role of the RET proto-oncogene in sporadic hyperparathyroidism and in hyperparathyroidism of multiple endocrine neoplasia type 2. J Clin Endocrinol Metab. 1996;81(7):2711–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Sakurai A, Katai M, Yumita W, Minemura K, Hashizume K. Clinical and genetic features of patients with multiple endocrine tumors who have neither family history nor MEN1 germline mutations. Endocrine. 2004;23(1):45–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Namihira H, Sato M, Matsubara S, et al. No evidence of germline mutation or somatic deletion of the MEN1 gene in a case of familial multiple endocrine neoplasia type 1 (MEN1). Endocr J. 1999;46(6):811–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Hai N, Aoki N, Shimatsu A, Mori T, Kosugi S. Clinical features of multiple endocrine neoplasia type 1 (MEN1) phenocopy without germline MEN1 gene mutations: analysis of 20 Japanese sporadic cases with MEN1. Clin Endocrinol (Oxf). 2000;52(4):509–18.CrossRefGoogle Scholar
  40. 40.
    Ozawa A, Agarwal SK, Mateo CM, et al. The parathyroid/pituitary variant of MEN1 usually has causes other than p27Kip1 mutations. J Clin Endocrinol Metab. 2007;92:1948–51.Google Scholar
  41. 41.
    Fritz A, Walch A, Piotrowska K, et al. Recessive transmission of a multiple endocrine neoplasia syndrome in the rat. Cancer Res. 2002;62(11):3048–51.PubMedGoogle Scholar
  42. 42.
    Pellegata NS, Quintanilla-Martinez L, Siggelkow H, et al. Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans. Proc Natl Acad Sci USA. 2006;103(42):15558–63.PubMedCrossRefGoogle Scholar
  43. 43.
    Sgambato A, Cittadini A, Faraglia B, Weinstein IB. Multiple functions of p27(Kip1) and its alterations in tumor cells: a review. J Cell Physiol. 2000;183(1):18–27.PubMedCrossRefGoogle Scholar
  44. 44.
    Toyoshima H, Hunter T. p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell. 1994;78(1):67–74.PubMedCrossRefGoogle Scholar
  45. 45.
    Buchwald PC, Akerstrom G, Westin G. Reduced p18INK4c, p21CIP1/WAF1 and p27KIP1 mRNA levels in tumours of primary and secondary hyperparathyroidism. Clin Endocrinol (Oxf). 2004;60(3):389–93.CrossRefGoogle Scholar
  46. 46.
    Erickson LA, Jin L, Wollan P, Thompson GB, van Heerden JA, Lloyd RV. Parathyroid hyperplasia, adenomas, and carcinomas: differential expression of p27Kip1 protein. Am J Surg Pathol. 1999;23(3):288–95.PubMedCrossRefGoogle Scholar
  47. 47.
    Georgitsi M, Raitila A, Karhu A, et al. Germline CDKN1B/p27Kip1 mutation in multiple endocrine neoplasia. J Clin Endocrinol Metab. 2007;92(8):3321–5.PubMedCrossRefGoogle Scholar
  48. 48.
    Agarwal SK, Mateo CM, Marx SJ. Rare germline mutations in cyclin-dependent kinase inhibitor genes in multiple endocrine neoplasia type 1 and related states. J Clin Endocrinol Metab. 2009;94:1826–34.PubMedCrossRefGoogle Scholar
  49. 49.
    Costa-Guda J, Marinoni I, Molatore S, Pellegata NS, Arnold A. Somatic mutation and germline sequence abnormalities of CDKN1B, encoding p27Kip1, in sporadic parathyroid adenomas. J Clin Endocrinol Metab. 2011;96:E701–6.PubMedCrossRefGoogle Scholar
  50. 50.
    Bjorklund P, Akerstrom G, Westin G. Accumulation of nonphosphorylated beta-catenin and c-myc in primary and uremic secondary hyperparathyroid tumors. J Clin Endocrinol Metab. 2007;92(1):338–44.PubMedCrossRefGoogle Scholar
  51. 51.
    Ikeda S, Ishizaki Y, Shimizu Y, et al. Immunohistochemistry of cyclin D1 and beta-catenin, and mutational analysis of exon 3 of beta-catenin gene in parathyroid adenomas. Int J Oncol. 2002;20(3):463–6.PubMedGoogle Scholar
  52. 52.
    Bjorklund P, Lindberg D, Akerstrom G, Westin G. Stabilizing mutation of CTNNB1/beta-catenin and protein accumulation analyzed in a large series of parathyroid tumors of Swedish patients. Mol Cancer. 2008;7:53.PubMedCrossRefGoogle Scholar
  53. 53.
    Costa-Guda J, Arnold A. Absence of stabilizing mutations of beta-catenin encoded by CTNNB1 exon 3 in a large series of sporadic parathyroid adenomas. J Clin Endocrinol Metab. 2007;92(4):1564–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Semba S, Kusumi R, Moriya T, Sasano H. Nuclear accumulation of B-Catenin in human endocrine tumors: association with Ki-67 (MIB-1) proliferative activity. Endocr Pathol. 2000;11(3): 243–50.PubMedCrossRefGoogle Scholar
  55. 55.
    Brown EM, Gamba G, Riccardi D, et al. Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature. 1993;366(6455):575–80.PubMedCrossRefGoogle Scholar
  56. 56.
    Pollak MR, Brown EM, Chou YH, et al. Mutations in the human Ca(2+)-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Cell. 1993;75(7):1297–303.PubMedCrossRefGoogle Scholar
  57. 57.
    Pearce SH, Trump D, Wooding C, et al. Calcium-sensing receptor mutations in familial benign hypercalcemia and neonatal hyperparathyroidism. J Clin Invest. 1995;96(6):2683–92.PubMedCrossRefGoogle Scholar
  58. 58.
    Warner J, Epstein M, Sweet A, et al. Genetic testing in familial isolated hyperparathyroidism: unexpected results and their implications. J Med Genet. 2004;41(3):155–60.PubMedCrossRefGoogle Scholar
  59. 59.
    Hosokawa Y, Pollak MR, Brown EM, Arnold A. Mutational analysis of the extracellular Ca(2+)-sensing receptor gene in human parathyroid tumors. J Clin Endocrinol Metab. 1995;80(11):3107–10.PubMedCrossRefGoogle Scholar
  60. 60.
    Carpten JD, Robbins CM, Villablanca A, et al. HRPT2, encoding parafibromin, is mutated in hyperparathyroidism-jaw tumor syndrome. Nat Genet. 2002;32(4):676–80.PubMedCrossRefGoogle Scholar
  61. 61.
    Simonds WF, Robbins CM, Agarwal SK, Hendy GN, Carpten JD, Marx SJ. Familial isolated hyperparathyroidism is rarely caused by germline mutation in HRPT2, the gene for the hyperparathyroidism-jaw tumor syndrome. J Clin Endocrinol Metab. 2004;89(1):96–102.PubMedCrossRefGoogle Scholar
  62. 62.
    Shattuck TM, Valimaki S, Obara T, et al. Somatic and germ-line mutations of the HRPT2 gene in sporadic parathyroid carcinoma. N Engl J Med. 2003;349(18):1722–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Cetani F, Pardi E, Borsari S, et al. Genetic analyses of the HRPT2 gene in primary hyperparathyroidism: germline and somatic mutations in familial and sporadic parathyroid tumors. J Clin Endocrinol Metab. 2004;89(11):5583–91.PubMedCrossRefGoogle Scholar
  64. 64.
    Howell VM, Haven CJ, Kahnoski K, et al. HRPT2 mutations are associated with malignancy in sporadic parathyroid tumours. J Med Genet. 2003;40(9):657–63.PubMedCrossRefGoogle Scholar
  65. 65.
    Krebs LJ, Shattuck TM, Arnold A. HRPT2 mutational analysis of typical sporadic parathyroid adenomas. J Clin Endocrinol Metab. 2005;90(9):5015–7.PubMedCrossRefGoogle Scholar
  66. 66.
    Rozenblatt-Rosen O, Hughes CM, Nannepaga SJ, et al. The parafibromin tumor suppressor protein is part of a human Paf1 complex. Mol Cell Biol. 2005;25(2):612–20.PubMedCrossRefGoogle Scholar
  67. 67.
    Yart A, Gstaiger M, Wirbelauer C, et al. The HRPT2 tumor suppressor gene product parafibromin associates with human PAF1 and RNA polymerase II. Mol Cell Biol. 2005;25(12):5052–60.PubMedCrossRefGoogle Scholar
  68. 68.
    Zhang C, Kong D, Tan MH, et al. Parafibromin inhibits cancer cell growth and causes G1 phase arrest. Biochem Biophys Res Commun. 2006;350(1):17–24.PubMedCrossRefGoogle Scholar
  69. 69.
    Bradley KJ, Bowl MR, Williams SE, et al. Parafibromin is a nuclear protein with a functional monopartite nuclear localization signal. Oncogene. 2007;26(8):1213–21.PubMedCrossRefGoogle Scholar
  70. 70.
    Hahn MA, Marsh DJ. Identification of a functional bipartite nuclear localization signal in the tumor suppressor parafibromin. Oncogene. 2005;24(41):6241–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Arnold A. Molecular basis of primary hyperparathyroidism. In: Bilezikian JP, Marcus R, Levine MA, editors. The parathyroids. 2nd ed. San Diego, CA: Academic; 2001. p. 331–47.Google Scholar
  72. 72.
    Palanisamy N, Imanishi Y, Rao PH, Tahara H, Chaganti RS, Arnold A. Novel chromosomal abnormalities identified by comparative genomic hybridization in parathyroid adenomas. J Clin Endocrinol Metab. 1998;83(5):1766–70.PubMedCrossRefGoogle Scholar
  73. 73.
    Tahara H, Smith AP, Gas RD, Cryns VL, Arnold A. Genomic localization of novel candidate tumor suppressor gene loci in human parathyroid adenomas. Cancer Res. 1996;56(3):599–605.PubMedGoogle Scholar
  74. 74.
    Nussbaum SR, Gaz RD, Arnold A. Hypercalcemia and ectopic secretion of parathyroid hormone by an ovarian carcinoma with rearrangement of the gene for parathyroid hormone. N Engl J Med. 1990;323(19):1324–8.PubMedCrossRefGoogle Scholar
  75. 75.
    VanHouten JN, Yu N, Rimm D, et al. Hypercalcemia of malignancy due to ectopic transactivation of the parathyroid hormone gene. J Clin Endocrinol Metab. 2006;91(2):580–3.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Center for Molecular MedicineUniversity of Connecticut, School of MedicineFarmingtonUSA
  2. 2.Center for Molecular MedicineUniversity of Connecticut, School of MedicineFarmingtonUSA

Personalised recommendations