Skip to main content

Bone Density and Fracture Risk in Primary Hyperparathyroidism

  • Chapter
  • First Online:
  • 1203 Accesses

Abstract

Since the advent of autoanalyzers for biochemical screening in the 1970s, osteitis fibrosa cystica has become a rare finding, with about 80% of PHPT in Western countries now being identified through routine laboratory testing in patients without well-defined skeletal symptoms [1]. These patients most often have mild or sometimes intermittent hypercalcemia. It is important to distinguish between PHPT and familial hypocalciuric hypercalcemia (FHH). Patients with FHH typically have inappropriately normal PTH levels, although 10–20% have been reported to have absolute elevation of serum PTH [2]. FHH is associated with normal parathyroid glands, and does not require surgery or medical treatment. It is differentiated from PHPT by performing a 24-h measurement of urine calcium and creatinine and determining the ratio of the clearance of calcium to the clearance of creatinine. Data compiled from five studies showed that a ratio of less than 0.01 had a sensitivity of 85%, a specificity of 88%, and a positive predictive value of 85% to detect FHH; a ratio of greater than 0.02 essentially ruled out the possibility of FHH [3]. In the same review, about 12% of patients with PHPT had a ratio below 0.01 and 49% had a ratio above 0.02, with the remainder between the two values. The clinical utility of urinary calcium/creatinine clearance ratios is described in more detail in the chapter on diagnosis. This is an important differential diagnosis in order to avoid an unnecessary neck exploration. Some patients with normal serum calcium and inappropriately high PTH levels are being detected in the evaluation for factors contributing to osteoporosis. These patients have been classified as having “normocalcemic primary hyperparathyroidism,” a disorder associated with substantial skeletal involvement that may represent the earliest form of primary hyperthyroidism. In a longitudinal cohort study of 37 such patients (age 32–78, median 58 years; 95% female) followed for 1–8 years (median 3 years), 7 (19%) became hypercalcemic, all within the first 3 years of observation [4]. Three of the hypercalcemic patients had parathyroid surgery, with excision of a single parathyroid adenoma in two and excision of two hyperplastic glands in the third. Four normocalcemic patients also had surgery, with a single adenoma excised in one patient, a single hyperplastic gland excised in two others, and two hyperplastic glands removed from the fourth.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Silverberg SJ, Bilezikian JP. Evaluation and management of primary hyperparathyroidism. J Clin Endocrinol Metab. 1996;81(6):2036–40.

    Article  PubMed  CAS  Google Scholar 

  2. Marx SJ. Familial hypocalciuric hypercalcemia. N Engl J Med. 1980;303:810–1.

    Article  PubMed  CAS  Google Scholar 

  3. Fuleihan GE. Familial benign hypocalciuric hypercalcemia. J Bone Miner Res. 2002;17:N51–6.

    CAS  Google Scholar 

  4. Lowe H, McMahon DJ, Rubin MR, Bilezikian JP, Silverberg SJ. Normocalcemic primary hyperparathyroidism: further characterization of a new clinical phenotype. J Clin Endocrinol Metab. 2007;92(8):3001–5.

    Article  PubMed  CAS  Google Scholar 

  5. Garnero P, Hausherr E, Chapuy M-C, et al. Markers of bone resorption predict hip fracture in elderly women: the EPIDOS prospective study. J Bone Miner Res. 1996;11:1531–8.

    Article  PubMed  CAS  Google Scholar 

  6. Parfitt AM, Villanueva AR, Foldes J, Rao DS. Relations between histologic indices of bone formation: implications for the pathogenesis of spinal osteoporosis. J Bone Miner Res. 1995;10(3):466–73.

    Article  PubMed  CAS  Google Scholar 

  7. Bauer DC, Sklarin PM, Stone KL, et al. Biochemical markers of bone turnover and prediction of hip bone loss in older women: the study of osteoporotic fractures. J Bone Miner Res. 1999;14(8):1404–10.

    Article  PubMed  CAS  Google Scholar 

  8. Garnero P. Markers of bone turnover for the prediction of fracture risk. Osteoporos Int. 2000;11 Suppl 6:S55–65.

    Article  PubMed  Google Scholar 

  9. Raisz LG. Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest. 2005;115(12):3318–25.

    Article  PubMed  CAS  Google Scholar 

  10. Christiansen P, Steiniche T, Brixen K, et al. Primary hyperparathyroidism: biochemical markers and bone mineral density at multiple skeletal sites in Danish patients. Bone. 1997;21(1):93–9.

    Article  PubMed  CAS  Google Scholar 

  11. Valdemarsson S, Lindergard B, Tibblin S, Bergenfelz A. Increased biochemical markers of bone formation and resorption in primary hyperparathyroidism with special reference to patients with mild disease. J Intern Med. 1998;243(2):115–22.

    Article  PubMed  CAS  Google Scholar 

  12. Katagiri M, Ohtawa T, Fukunaga M, Harada T. Evaluation of bone loss and the serum markers of bone metabolism in patients with hyperparathyroidism. Surg Today. 1995;25(7):598–604.

    Article  PubMed  CAS  Google Scholar 

  13. Parisien M, Silverberg SJ, Shane E, et al. The histomorphometry of bone in primary hyperparathyroidism: preservation of cancellous bone structure. J Clin Endocrinol Metab. 1990;70(4):930–8.

    Article  PubMed  CAS  Google Scholar 

  14. Dempster DW, Parisien M, Silverberg SJ, et al. On the mechanism of cancellous bone preservation in postmenopausal women with mild primary hyperparathyroidism. J Clin Endocrinol Metab. 1999;84(5):1562–6.

    Article  PubMed  CAS  Google Scholar 

  15. Steiniche T, Christiansen P, Vesterby A, et al. Primary hyperparathyroidism: bone structure, ­balance, and remodeling before and 3 years after surgical treatment. Bone. 2000;26(5):535–43.

    Article  PubMed  CAS  Google Scholar 

  16. Parisien M, Cosman F, Mellish RW, et al. Bone structure in postmenopausal hyperparathyroid, osteoporotic, and normal women. J Bone Miner Res. 1995;10(9):1393–9.

    Article  PubMed  CAS  Google Scholar 

  17. Parisien M, Mellish RW, Silverberg SJ, et al. Maintenance of cancellous bone connectivity in primary hyperparathyroidism: trabecular strut analysis. J Bone Miner Res. 1992;7(8):913–9.

    Article  PubMed  CAS  Google Scholar 

  18. Eriksen EF, Mosekilde L, Melsen F. Trabecular bone remodeling and balance in primary hyperparathyroidism. Bone. 1986;7(3):213–21.

    Article  PubMed  CAS  Google Scholar 

  19. Silverberg SJ, Shane E, de la Cruz L, et al. Skeletal disease in primary hyperparathyroidism. J Bone Miner Res. 1989;4(3):283–91.

    Article  PubMed  CAS  Google Scholar 

  20. Christiansen P, Steiniche T, Vesterby A, Mosekilde L, Hessov I, Melsen F. Primary hyperparathyroidism: iliac crest trabecular bone volume, structure, remodeling, and balance evaluated by histomorphometric methods. Bone. 1992;13(1):41–9.

    Article  PubMed  CAS  Google Scholar 

  21. van Doorn L, Lips P, Netelenbos JC, Hackeng WH. Bone histomorphometry and serum concentrations of intact parathyroid hormone (PTH(1–84)) in patients with primary hyperparathyroidism. Bone Miner. 1993;23(3):233–42.

    Article  PubMed  Google Scholar 

  22. Vogel M, Hahn M, Delling G. Trabecular bone structure in patients with primary hyperparathyroidism. Virchows Arch. 1995;426(2):127–34.

    Article  PubMed  CAS  Google Scholar 

  23. Uchiyama T, Tanizawa T, Ito A, Endo N, Takahashi HE. Microstructure of the trabecula and cortex of iliac bone in primary hyperparathyroidism patients determined using histomorphometry and node-strut analysis. J Bone Miner Metab. 1999;17(4):283–8.

    Article  PubMed  CAS  Google Scholar 

  24. Barger-Lux MJ, Recker RR. Bone microstructure in osteoporosis: transilial biopsy and histomorphometry. Top Magn Reson Imaging. 2002;13(5):297–305.

    Article  PubMed  Google Scholar 

  25. Muller R, Van CH, Van DB, et al. Morphometric analysis of human bone biopsies: a quantitative structural comparison of histological sections and micro-computed tomography. Bone. 1998;23(1):59–66.

    Article  PubMed  CAS  Google Scholar 

  26. Dempster DW, Muller R, Zhou H, et al. Preserved three-dimensional cancellous bone structure in mild primary hyperparathyroidism. Bone. 2007;41(1):19–24.

    Article  PubMed  CAS  Google Scholar 

  27. Roschger P, Dempster DW, Zhou H, et al. New observations on bone quality in mild primary hyperparathyroidism as determined by quantitative backscattered electron imaging. J Bone Miner Res. 2007;22(5):717–23.

    Article  PubMed  Google Scholar 

  28. Dempster DW, Cosman F, Parisien M, Shen V, Lindsay R. Anabolic actions of parathyroid hormone on bone. Endocr Rev. 1993;14:690–709.

    PubMed  CAS  Google Scholar 

  29. Bellido T, Ali AA, Gubrij I, et al. Chronic elevation of parathyroid hormone in mice reduces expression of sclerostin by osteocytes: a novel mechanism for hormonal control of osteoblastogenesis. Endocrinology. 2005;146(11):4577–83.

    Article  PubMed  CAS  Google Scholar 

  30. Fu Q, Jilka RL, Manolagas SC, O’Brien CA. Parathyroid hormone stimulates receptor activator of NFkappaB ligand and inhibits osteoprotegerin expression via protein kinase A activation of cAMP-response element-binding protein. J Biol Chem. 2002;277(50):48868–75.

    Article  PubMed  CAS  Google Scholar 

  31. Canalis E, Giustina A, Bilezikian JP. Mechanisms of anabolic therapies for osteoporosis. N Engl J Med. 2007;357(9):905–16.

    Article  PubMed  CAS  Google Scholar 

  32. Miller PD, Bilezikian JP. Bone densitometry in asymptomatic primary hyperparathyroidism. J Bone Miner Res. 2002;17:N98–102.

    Article  PubMed  Google Scholar 

  33. Silverberg SJ, Shane E, Jacobs TP, Siris E, Bilezikian JP. A 10-year prospective study of primary hyperparathyroidism with or without parathyroid surgery. N Engl J Med. 1999;341:1249–55.

    Article  PubMed  CAS  Google Scholar 

  34. Rubin MR, Bilezikian JP, McMahon DJ, et al. The natural history of primary hyperparathyroidism with or without parathyroid surgery after 15-years. J Clin Endocrinol Metab. 2008;93(9):3462–70.

    Article  PubMed  CAS  Google Scholar 

  35. Consensus Development Conference Panel. Diagnosis and management of asymptomatic primary hyperparathyroidism: consensus development conference statement. Ann Intern Med. 1991;114:593–7.

    Google Scholar 

  36. Wermers RA, Khosla S, Atkinson EJ, et al. Incidence of primary hyperparathyroidism in Rochester, Minnesota, 1993–2001: an update on the changing epidemiology of the disease. J Bone Miner Res. 2006;21(1):171–7.

    Article  PubMed  Google Scholar 

  37. Silverberg SJ. Natural history of primary hyperparathyroidism. Endocrinol Metabol Clin North Am. 2000;29(3):451–64.

    Article  CAS  Google Scholar 

  38. Palmer M, Jakobsson S, Akerstrom G, Ljunghall S. Prevalence of hypercalcaemia in a health survey: a 14-year follow-up study of serum calcium values. Eur J Clin Invest. 1988;18(1):39–46.

    Article  PubMed  CAS  Google Scholar 

  39. Chen Q, Kaji H, Iu MF, et al. Effects of an excess and a deficiency of endogenous parathyroid hormone on volumetric bone mineral density and bone geometry determined by peripheral quantitative computed tomography in female subjects. J Clin Endocrinol Metab. 2003;88(10):4655–8.

    Article  PubMed  CAS  Google Scholar 

  40. Charopoulos I, Tournis S, Trovas G, et al. Effect of primary hyperparathyroidism on volumetric bone mineral density and bone geometry assessed by peripheral quantitative computed tomography in postmenopausal women. J Clin Endocrinol Metab. 2006;91(5):1748–53.

    Article  PubMed  CAS  Google Scholar 

  41. Eriksen EF. Primary hyperparathyroidism: lessons from bone histomorphometry. J Bone Miner Res. 2002;17:N95–7.

    PubMed  Google Scholar 

  42. Silverberg SJ, Gartenberg F, Jacobs TP, et al. Increased bone mineral density after parathyroidectomy in primary hyperparathyroidism. J Clin Endocrinol Metab. 1995;80:729–34.

    Article  PubMed  CAS  Google Scholar 

  43. Christiansen P, Steiniche T, Brixen K, et al. Primary hyperparathyroidism: effect of parathyroidectomy on regional bone mineral density in Danish patients: a three-year follow-up study. Bone. 1999;25(5):589–95.

    Article  PubMed  CAS  Google Scholar 

  44. Leppla DC, Snyder W, Pak CY. Sequential changes in bone density before and after parathyroidectomy in primary hyperparathyroidism. Invest Radiol. 1982;17(6):604–6.

    Article  PubMed  CAS  Google Scholar 

  45. Rao DS, Phillips ER, Divine GW, Talpos GB. Randomized controlled clinical trial of surgery versus no surgery in patients with mild asymptomatic primary hyperparathyroidism. J Clin Endocrinol Metab. 2004;89(11):5415–22.

    Article  PubMed  CAS  Google Scholar 

  46. Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ. 1996;312(7041):1254–9.

    Article  PubMed  CAS  Google Scholar 

  47. Bilezikian JP. Bone strength in primary hyperparathyroidism. Osteoporos Int. 2003;14 Suppl 5:113–7.

    Article  Google Scholar 

  48. Parfitt AM. Parathyroid hormone and periosteal bone expansion. J Bone Miner Res. 2002;17(10):1741–3.

    Article  PubMed  CAS  Google Scholar 

  49. Adami S, Braga V, Squaranti R, Rossini M, Gatti D, Zamberlan N. Bone measurements in asymptomatic primary hyperparathyroidism. Bone. 1998;22(5):565–70.

    Article  PubMed  CAS  Google Scholar 

  50. Seeman E, Duan Y, Fong C, Edmonds J. Fracture site-specific deficits in bone size and volumetric density in men with spine or hip fractures. J Bone Miner Res. 2001;16(1):120–7.

    Article  PubMed  CAS  Google Scholar 

  51. Khosla S, Melton III LJ. Fracture risk in primary hyperparathyroidism. J Bone Miner Res. 2002;17:N103–7.

    PubMed  Google Scholar 

  52. Khosla S, Melton III LJ, Wermers RA, Crowson CS, O’Fallon WM, Riggs BL. Primary hyperparathyroidism and the risk of fracture: a population-based study. J Bone Miner Res. 1999;14(10):1700–7.

    Article  PubMed  CAS  Google Scholar 

  53. Wilson RJ, Rao S, Ellis B, Kleerekoper M, Parfitt AM. Mild asymptomatic primary hyperparathyroidism is not a risk factor for vertebral fractures. Ann Intern Med. 1988;109:959–62.

    PubMed  CAS  Google Scholar 

  54. Vestergaard P, Mollerup CL, Frokjaer VG, Christiansen P, Blichert-Toft M, Mosekilde L. Cohort study of risk of fracture before and after surgery for primary hyperparathyroidism. BMJ. 2000;321(7261):598–602.

    Article  PubMed  CAS  Google Scholar 

  55. Vestergaard P, Mosekilde L. Parathyroid surgery is associated with a decreased risk of hip and upper arm fractures in primary hyperparathyroidism: a controlled cohort study. J Intern Med. 2004;255(1):108–14.

    Article  PubMed  CAS  Google Scholar 

  56. Larsson K, Ljunghall S, Krusemo UB, Naessen T, Lindh E, Persson I. The risk of hip fractures in patients with primary hyperparathyroidism: a population-based cohort study with a follow-up of 19 years. J Intern Med. 1993;234(6):585–93.

    Article  PubMed  CAS  Google Scholar 

  57. Bilezikian JP, Potts Jr JT. Asymptomatic primary hyperparathyroidism: new issues and new questions – bridging the past with the future. J Bone Miner Res. 2002;17:N57–67.

    Article  PubMed  Google Scholar 

  58. De GS, Romagnoli E, Diacinti D, D’Erasmo E, Minisola S. The risk of fractures in postmenopausal women with primary hyperparathyroidism. Eur J Endocrinol. 2006;155(3):415–20.

    Article  Google Scholar 

  59. Bilezikian JP, Silverberg SJ. Clinical practice. Asymptomatic primary hyperparathyroidism. N Engl J Med. 2004;350(17):1746–51.

    Article  PubMed  CAS  Google Scholar 

  60. Bilezikian JP, Khan AA, Potts Jr JT. Guidelines for the management of asymptomatic primary hyperparathyroidism: summary statement from the third international workshop. J Clin Endocrinol Metab. 2009;94(2):335–9.

    Article  PubMed  CAS  Google Scholar 

  61. Favus MJ. Postmenopausal osteoporosis and the detection of so-called secondary causes of low bone density. J Clin Endocrinol Metab. 2005;90(6):3800–1.

    Article  PubMed  CAS  Google Scholar 

  62. Tannenbaum C, Clark J, Schwartzman K, et al. Yield of laboratory testing to identify secondary contributors to osteoporosis in otherwise healthy women. J Clin Endocrinol Metab. 2003;87:4431–7.

    Article  Google Scholar 

  63. Fitzpatrick LA. Secondary causes of osteoporosis. Mayo Clin Proc. 2002;77(5):453–68.

    PubMed  Google Scholar 

  64. Compston J. Secondary causes of osteoporosis in men. Calcif Tissue Int. 2001;69(4):193–5.

    Article  PubMed  CAS  Google Scholar 

  65. Orlic ZC, Raisz LG. Causes of secondary osteoporosis. J Clin Densitom. 1999;2(1):79–92.

    Article  Google Scholar 

  66. Harper KD, Weber TJ. Secondary osteoporosis – diagnostic considerations. Endocrinol Metabol Clin North Am. 1998;27(2):325–48.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Michael Lewiecki MD, FACP, FACE .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lewiecki, E.M., Miller, P.D. (2012). Bone Density and Fracture Risk in Primary Hyperparathyroidism. In: Khan, MD, A., Clark, O. (eds) Handbook of Parathyroid Diseases. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2164-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-2164-1_13

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-2163-4

  • Online ISBN: 978-1-4614-2164-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics