Skip to main content

Modeling Structural and Genomic Constraints in the Evolution of Proteins

  • Chapter
  • First Online:
  • 2489 Accesses

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Macromolecules influence the phenotype of the organism where they are expressed through their function, and in particular through their interactions. Nevertheless, it is very difficult to computationally predict protein function and interactions. Moreover, only a few residues take part in them. For these reasons, models of molecular evolution usually represent folded macromolecules such as RNA or proteins and identify the function of the molecule with the folded structure, whose stability determines the modeled fitness.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Schuster, P., Fontana, W., Stadler, P.F., Hofacker, I.L.: From sequences to shapes and back – A case-study in RNA secondary structures. Proc. R. Soc. London B 255, 279–284 (1994)

    Article  ADS  Google Scholar 

  2. Schuster, P., Stadler, P.F.: Modeling conformational flexibility and evolution of structure: RNA as an example. In: Bastolla, U., Porto, M., Roman, H.E., Vendruscolo, M. (eds.) Structural Approaches to Sequence Evolution, pp. 3–36. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Hofacker, I.L.: Vienna RNA secondary structure server. Nucl. Ac. Res. 31, 3429–3431 (2003)

    Article  Google Scholar 

  4. Huynen, M.A., Stadler, P.F., Fontana, W.: Smoothness within ruggedness: the role of neutrality in adaptation. Proc. Natl. Acad. Sci. USA 93, 397–401 (1996)

    Article  ADS  Google Scholar 

  5. Babajide, A., Hofacker, I.L., Sippl, M.J., Stadler, P.F.: Neutral networks in protein space. Fol. Des. 2, 261–269 (1997)

    Article  Google Scholar 

  6. Govindarajan, S., Goldstein, R.A.: On the thermodynamic hypothesis of protein folding. Proc. Natl. Acad. Sci. USA 95, 5545–5549 (1998)

    Article  ADS  Google Scholar 

  7. Bornberg-Bauer, E., Chan, H.S.: Modeling evolutionary landscapes: mutational stability, topology, and superfunnels in sequence space. Proc. Natl. Acad. Sci. USA 96, 10689–10694 (1999)

    Article  ADS  Google Scholar 

  8. Bussemaker, H.J., Thirumalai, D., Bhattacharjee, J.K.: Thermodynamic stability of folded proteins against mutations. Phys. Rev. Lett. 79, 3530–3533 (1997)

    Article  ADS  Google Scholar 

  9. Tiana, G., Broglia, R.A., Roman, H.E., Vigezzi, E., Shakhnovich, E.I.: Folding and misfolding of designed proteinlike chains with mutations. J. Chem. Phys. 108, 757–761 (1998)

    Article  ADS  Google Scholar 

  10. Mirny, L.A., Abkevich, V.I., Shakhnovich, E.I.: How evolution makes proteins fold quickly. Proc. Natl. Acad. Sci. USA 95, 4976–4981 (1998)

    Article  ADS  Google Scholar 

  11. Dokholyan, N.V., Shakhnovich, E.I.: Understanding hierarchical protein evolution from first principles. J. Mol. Biol. 312, 289–307 (2001)

    Article  Google Scholar 

  12. Parisi, G., Echave, J.: Structural constraints and emergence of sequence patterns in protein evolution. Mol. Biol. Evol. 18, 750–756 (2001)

    Article  Google Scholar 

  13. DePristo, M.A., Weinreich, D.M., Hartl, D.L.: Missense meanderings in sequence space: a biophysical view of protein evolution. Nature Rev. Genet. 6, 678–687 (2005)

    Article  Google Scholar 

  14. Bloom, J.D., Silberg, J.J., Wilke, C.O., Drummond, D.A., Adami, C., Arnold, F.H.: Thermodynamic prediction of protein neutrality. Proc. Natl. Acad. Sci. USA 102, 606–611 (2005)

    Article  ADS  Google Scholar 

  15. Vendruscolo, M., Kussell, E., Domany, E.: Recovery of protein structure from contact maps. Fol. Des. 2, 295–306 (1997)

    Article  Google Scholar 

  16. Bastolla, U., Farwer, J., Knapp, E.W., Vendruscolo, M.: How to guarantee optimal stability for most representative structures in the protein data bank. Proteins 44, 79–96 (2001)

    Article  Google Scholar 

  17. Guerois, R., Nielsen, J.E., Serrano, L.: Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J. Mol. Biol. 320, 369–87 (2002)

    Article  Google Scholar 

  18. Berezovsky, I.N., Zeldovich, K.B., Shakhnovich, E.I.: Positive and negative design in stability and thermal adaptation of natural proteins. PLoS Comput. Biol. 3, e52 (2007)

    Article  ADS  Google Scholar 

  19. Noivirt-Brik, O., Horovitz, A., Unger, R.: Trade-off between positive and negative design of protein stability: from lattice models to real proteins. PLoS Comput. Biol. 5, e1000592 (2009)

    Article  Google Scholar 

  20. Lockless, S.W., Ranganathan, R.: Evolutionarily conserved pathways of energetic connectivity in protein families. Science 286, 295–299 (1999)

    Article  Google Scholar 

  21. Shakhnovich, E., Gutin, A.: Enumeration of all compact conformations of copolymers with random sequence of links. J. Chem. Phys. 93, 5967–5972 (1990)

    Article  ADS  Google Scholar 

  22. Derrida, B.: Random energy model: an exactly solvable model of disordered systems. Phys. Rev. B 24, 2613–2626 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  23. Bastolla, U., Demetrius, L.: Stability constraints and protein evolution: the role of chain length, composition and disulfide bonds. Protein Eng. Des. Sel. 18, 405–415 (2005)

    Article  Google Scholar 

  24. Goldstein, R.A.: The evolution and evolutionary consequences of marginal thermostability in proteins. Proteins 79(5), 1396–407 (2011)

    Article  Google Scholar 

  25. Mendez, R., Fritsche, M., Porto, M., Bastolla, U.: Mutation bias favors protein folding stability in the evolution of small populations. PLoS Comp. Biol. 6, e1000767 (2010)

    Article  MathSciNet  Google Scholar 

  26. Zeldovich, K.B., Chen, P., Shakhnovich, E.I.: Protein stability imposes limits on organism complexity and speed of molecular evolution. Proc. Natl. Acad. Sci. USA 104, 16152–16157 (2007)

    Article  ADS  Google Scholar 

  27. Muller, H.J.: Some genetic aspects of sex. Am. Nat. 66, 118–138 (1932)

    Article  Google Scholar 

  28. Wright, S.G.: The distribution of gene frequencies in populations of polyploids. Proc. Natl. Acad. Sci. USA 24, 372–377 (1938)

    Article  ADS  Google Scholar 

  29. Fisher, R.A.: The Genetical Theory of Natural Selection. Dover, New York (1958)

    Google Scholar 

  30. Ohta, T.: Role of very slightly deleterious mutations in molecular evolution and polymorphism. Theor. Pop. Biol. 10, 254–275 (1976)

    Article  Google Scholar 

  31. Graur, D., Li, W.H.: Fundamentals of Molecular Evolution. Sinauer, Sunderland (2000)

    Google Scholar 

  32. Moran, N.A.: Accelerated evolution and Muller’s ratchet in endosymbiotic bacteria. Proc. Natl. Acad. Sci. USA 95, 4458–4462 (1996)

    Google Scholar 

  33. Itoh, T., Martin, W., Nei, M.: Acceleration of genomic evolution caused by enhanced mutation rate in endocellular bacteria. Proc. Natl. Acad. Sci. USA 99, 12944–12948 (2002)

    Article  ADS  Google Scholar 

  34. Lambert, D.J., Moran, N.A.: Deleterious mutations destabilize ribosomal RNA in endosymbiotic bacteria. Proc. Natl. Acad. Sci. USA 95, 4458–4462 (1998)

    Article  ADS  Google Scholar 

  35. Bastolla, U., Moya, A., Viguera, E., van Ham, R.C.H.J.: Genomic determinants of protein folding thermodynamics. J. Mol. Biol. 343, 1451–1466 (2004)

    Article  Google Scholar 

  36. Duarte, E., Clarke, D., Moya, A., Domingo, E., Holland, J.: Rapid fitness losses in mammalian RNA virus clones due to Muller’s ratchet. Proc. Natl. Acad. Sci. USA 89, 6015–6019 (1992)

    Article  ADS  Google Scholar 

  37. Novella, I.S., Dutta, R.N., Wilke, C.O.: A linear relationship between fitness and the logarithm of the critical bottleneck size in vesicular stomatitis virus populations. J. Virol. 82, 12589–12590 (2008)

    Article  Google Scholar 

  38. Fares, M.A., Ruiz-Gonzalez, M.X., Moya, A., Elena, S.F., Barrio, E.: Endosymbiotic bacteria: GroEL buffers against deleterious mutations. Nature 417, 398 (2002)

    Article  ADS  Google Scholar 

  39. Berg, J., Willmann, S., Lässig, M.: Adaptive evolution of transcription factor binding sites. BMC Evol. Biol. 4, 42 (2004)

    Article  Google Scholar 

  40. Sella, G., Hirsh, A.E.: The application of statistical physics to evolutionary biology. Proc. Natl. Acad. Sci. USA 102, 9541–9546 (2005)

    Article  ADS  Google Scholar 

  41. Durrett, R.: Probability Models for DNA Sequence Evolution. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  42. Barton, N.H., Coe, J.B.: On the application of statistical physics to evolutionary biology J. Theor. Biol. 259, 317–324 (2009)

    Article  Google Scholar 

  43. Eigen, M.: Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58, 465–523 (1971)

    Article  ADS  Google Scholar 

  44. Leuthäusser, I.: Statistical mechanics of Eigen’s evolution model. J. Stat. Phys. 48, 343–336 (1987)

    Article  ADS  Google Scholar 

  45. Tarazona, P.: Error thresholds for molecular quasispecies as phase transitions: from simple landscapes to spin-glass models. Phys. Rev. A 45, 6038–6050 (1992)

    Article  ADS  Google Scholar 

  46. Bromham, L., Penny, D.: The modern molecular clock. Nature Rev. Genet. 4, 216–224 (2003)

    Article  Google Scholar 

  47. Kimura, M.: Evolutionary rate at the molecular level. Nature 217, 624–626 (1968)

    Article  ADS  Google Scholar 

  48. Kimura, M.: The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge (1983)

    Google Scholar 

  49. Gillespie, J.H.: The Causes of Molecular Evolution. Oxford University Press, New York (1991)

    Google Scholar 

  50. Bastolla, U., Porto, M., Roman, H.E., Vendruscolo, M.: Connectivity of neutral networks, overdispersion and structural conservation in protein evolution. J. Mol. Evol. 56, 243–254 (2003)

    Article  Google Scholar 

  51. van Nimwegen, E., Crutchfield, J.P., Huynen, M.: Neutral evolution of mutational robustness. Proc. Natl. Acad. Sci. USA 96, 9716–9720 (1999)

    Article  ADS  Google Scholar 

  52. Drummond, D.A., Wilke, C.O.: Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution. Cell 134, 341–352 (2008)

    Article  Google Scholar 

  53. Freeland, S.J., Knight, R.D., Landweber, L.F., Hurst, L.D.: Early fixation of an optimal genetic code. Mol. Biol. Evol. 17, 511–518 (2000)

    Google Scholar 

  54. Sammet, S.G., Bastolla, U., Porto, M.: Comparison of translation loads for standard and alternative genetic codes. BMC Evol. Biol. 10, 178 (2010)

    Article  Google Scholar 

  55. Muto, A., Osawa, S.: The guanine and cytosine content of genomic DNA and bacterial evolution. Proc. Natl. Acad. Sci. USA 84, 166–169 (1987)

    Article  ADS  Google Scholar 

  56. Chen, S.L., Lee, W., Hottes, A.K., Shapiro, L., McAdams, H.: Codon usage between genomes is constrained by genome-wide mutational processes. Proc. Natl. Acad. Sci. USA 101, 3480–3485 (2004)

    Article  ADS  Google Scholar 

  57. Sueoka, N.: Correlation between base composition of the deoxyribonucleic acid and amino acid composition of proteins. Proc. Natl. Acad. Sci. USA 47, 469–478 (1961)

    Article  Google Scholar 

  58. Bernardi, G., Bernardi, G.: Codon usage and genome composition. J. Mol. Evol. 24, 1–11 (1985)

    Article  MathSciNet  Google Scholar 

  59. D’Onofrio, G., Jabbari, K., Musto, H., Bernardi, G.: The correlation of protein hydropathy with the base composition of coding sequences. Gene 238, 3–14 (1999)

    Article  Google Scholar 

  60. Kauzmann, W.: Some factors in the interpretation of protein denaturation. Adv. Protein Chem. 14, 1–63 (1959)

    Article  Google Scholar 

  61. Uversky, V.N.: Protein folding revisited. A polypeptide chain at the folding – misfolding – nonfolding cross-roads: which way to go? Cell. Mol. Life Sci. 60, 1852–1871 (2003)

    Google Scholar 

  62. Bastolla, U., Porto, M., Roman, H.E., Vendruscolo, M.: A protein evolution model with independent sites that reproduces site-specific amino acid distributions from the Protein Data Bank. BMC Evol. Biol. 6, 43 (2006)

    Article  Google Scholar 

  63. Silva, F., Latorre, A., Gomez-Valero, L., Moya, A.: Genomic changes in bacteria: from free-living to endosymbiotic life. In: Bastolla, U., Porto, M., Roman, H.E., Vendruscolo, M. (eds.) (2007) Structural Approaches to Sequence Evolution, pp. 149–168. Springer, Heidelberg (2008)

    Google Scholar 

  64. Li, H., Tang, W.: Nature of driving force for protein folding: a result from analyzing the statistical potentials. Phys. Rev. Lett. 79, 765–768 (1997)

    Article  ADS  Google Scholar 

  65. Bastolla, U., Porto, M., Roman, H.E., Vendruscolo, M.: Principal eigenvector of contact matrices and hydrophobicity profiles in proteins. Proteins 58, 22–30 (2005)

    Article  Google Scholar 

  66. Bastolla, U., Ortiz, A.R., Porto, M., Teichert, F.: Effective connectivity profile: a structural representation that evidences the relationship between protein structures and sequences. Proteins 73, 872–888 (2008)

    Article  Google Scholar 

  67. Göbel, U., Sander, C., Schneider, R., Valencia, A.: Correlated mutations and residue contacts in proteins. Proteins 18, 309–317 (1994)

    Article  Google Scholar 

  68. Rost, B.: Protein structures sustain evolutionary drift. Fol. Des. 2, S19–S24 (1997)

    Article  Google Scholar 

  69. Bastolla, U., Roman, H.E., Vendruscolo, M.: Neutral evolution of model proteins: diffusion in sequence space and overdispersion. J. Theor. Biol. 200, 49–64 (1999)

    Article  Google Scholar 

  70. Chothia, C., Lesk, A.M.: The relation between the divergence of sequence and structure in proteins. EMBO J. 5, 823–826 (1986)

    Google Scholar 

  71. Pascual-Garcia, A., Abia, D., Méndez, R., Nido, G.S., Bastolla, U.: Quantifying the evolutionary divergence of protein structures: the role of function change and function conservation. Proteins 78, 181–196 (2010)

    Article  Google Scholar 

  72. Ding, F., Dokholyan, N.V.: Emergence of protein fold families through rational design. PLoS Comp. Biol. 2, e85 (2006)

    Article  ADS  Google Scholar 

  73. Leo-Macias, A., Lopez-Romero, P., Lupyan, D., Zerbino, D., Ortiz, A.R.: An analysis of core deformations in protein superfamilies. Biophys J. 88, 1291–1299 (2005)

    Article  Google Scholar 

  74. Echave, J.: Evolutionary divergence of protein structure: the linearly forced elastic network model. Chem. Phys. Lett. 457, 413–416 (2008)

    Article  ADS  Google Scholar 

  75. Tirion, M.M.: Large amplitude elastic motions in proteins from a single-parameter, atomic analysis. Phys. Rev. Lett. 77, 1905–1908 (1996)

    Article  ADS  Google Scholar 

  76. Murzin, A.G., Brenner, S.E., Hubbard, T., Chothia, C.: SCOP: A structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247, 536–540 (1995)

    Google Scholar 

  77. Orengo, C.A., Michie, A.D., Jones, S., Jones, D.T., Swindells, M.B., Thornton, J.M.: CATH – A hierarchic classification of protein domain structures. Structure 5, 1093–1108 (1997)

    Article  Google Scholar 

  78. Dokholyan, N.V., Shakhnovich, B., Shakhnovich, E.I.: Expanding protein universe and its origin from the biological big bang. Proc. Natl. Acad. Sci. USA 99, 14132–14136 (2002)

    Article  ADS  Google Scholar 

  79. Grishin, N.V.: Fold change in evolution of protein structures. J. Struct. Biol. 134, 167–185 (2001)

    Article  Google Scholar 

  80. Viksna, J., Gilbert, D.: Assessment of the probabilities for evolutionary structural changes in protein folds. Bioinformatics 23, 832–841 (2007)

    Article  Google Scholar 

  81. Pascual-García, A., Abia, D., Ortiz, A.R., Bastolla, U.: Cross-over between discrete and continuous protein structure space: insights into automatic classification and networks of protein structures. PLoS Comput. Biol. 5, e1000331 (2009)

    Article  Google Scholar 

  82. Soskine, M., Tawfik, D.S.: Mutational effects and the evolution of new protein functions. Nature Rev. Genet. 11, 572–582 (2010)

    Article  Google Scholar 

  83. Mendez, R., Bastolla, U.: Torsional network model: normal modes in torsion angle space better correlate with conformation changes in proteins. Phys. Rev. Lett. 104, 228103 (2010)

    Article  ADS  Google Scholar 

  84. Ward, J.J., Sodhi, J.S., McGuffin, L.J., Buxton, B.F., Jones, D.T.: Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J. Mol. Biol. 337, 635–645 (2004)

    Article  Google Scholar 

  85. Uversky, V.N., Dunker, A.K.: Understanding protein non-folding. Biochim. Biophys. Acta 1804, 1231–1264 (2010)

    Article  Google Scholar 

  86. Mao, A.H., Crick, S.L., Vitalis, A., Chicoine, C.L., Pappu, R.V.: Net charge per residue modulates conformational ensembles of intrinsically disordered proteins. Proc. Natl. Acad. Sci. USA 107, 8183–8188 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge our past and present collaborators in this field: David Abia, LLoyd Demetrius, Miriam Fritsche, Raul Méndez, Gonzalo S. Nido, Jonas Minning, Alberto Pascual-García, H. Eduardo Roman, Christoph Schmitt, Stefanie Sammet, Florian Teichert, and Michele Vendruscolo. Our research has been funded by several agencies over the years, and we wish to specifically mention financial support by the Spanish Science and Innovation Ministry (“Ramón y Cajal” and “Acciones Integradas España-Alemania” programs), the Deutscher Akademischer Austauschdienst (“Acciones Integradas España-Alemania” program) and the Deutsche Forschungsgemeinschaft (Normalverfahren and Heisenberg program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugo Bastolla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bastolla, U., Porto, M. (2012). Modeling Structural and Genomic Constraints in the Evolution of Proteins. In: Dokholyan, N. (eds) Computational Modeling of Biological Systems. Biological and Medical Physics, Biomedical Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2146-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-2146-7_14

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-2145-0

  • Online ISBN: 978-1-4614-2146-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics