Skip to main content
Book cover

Nanomedicine pp 145–169Cite as

Nanotechnology in Advanced Medical Devices

  • Chapter
  • First Online:

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Nanotechnology is rapidly evolving and having a widespread impact. Due to the small size and physiochemical nature of nanomaterials, it has been revolutionising advanced medical devices. It is important to note that the World Health Organisation’s definition of medical devices includes examples that are counterintuitive but must be examined, this involves a large range of devices that can be categorised in the fields of imaging, biosensors and surgery. It is also germane to evaluate how academia, industry and government regulations are using legislative protocols to mitigate the associated risks. This chapter intends to review the field of advanced medical devices utilizing nanotechnology together with a discussion on its impact on health and medicine.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AFM:

Atomic Force Microscopy

AMD:

Advanced Medical Device

CCMV:

Cowpea Chlorotic Mottle Virus

CT:

Computed tomography

EBID:

Electron Beam Induced Deposition

ECM:

Extracellular Matrix

ESF:

European Science Foundation

HSE:

Health and Safety Executive

LOC:

Lab on a Chip

MD:

Medical Device

MEMs:

Microelectromechnical System

MNP:

Magnetic Nanoparticles

MPA:

Mercaptopropionic Acid (MPA)

MRI:

Magnetic Resonance Imaging

NEMs:

Nanoelectromechnical Systems

NMs:

Nanomaterials

NP:

Nanoparticles

OSHA:

Occupational Safety and Health Act

PAMAM:

Poly(amidoamine)

PB:

Prussian Blue

PEG:

Polyethylene Glycol

PMMA:

Polymethyl Methacrylate

POC:

Point of Care

QD:

Quantum Dots

REACH:

Registration Evaluation, Authorisation and restriction of Chemicals

SPION:

Superparamagnetic Iron Oxide Nanoparticles

SPR:

Surface Plasmon Resonance

SWCNT:

Single Walled Carbon Nanotube

USPION:

Ultra-small Superparamagnetic Iron Oxide Nanoparticles

VNP:

Viral Nanoparticles

WHO:

World Health Organisation

References

  1. Zheng J (2014) Layout of nanotechnology patents in global market. Adv Mat Res 889:1578–1584

    Article  Google Scholar 

  2. Hansen SF, Maynard A, Baun A, Tickner JA (2008) Late lessons from early warnings for nanotechnology. Nat Nanotechnol 3:444–447

    Article  CAS  Google Scholar 

  3. Flynn T, Wei C (2005) The pathway to commercialization for nanomedicine. Nanomedicine 1(1):47–51

    Article  CAS  Google Scholar 

  4. Feynman R (1960) There’s plenty of room at the bottom. Caltech’s Eng Sci 23:22–36

    Google Scholar 

  5. Patel DN, Bailey SR (2007) Nanotechnology in cardiovascular medicine. Catheter Cardiovasc Interv 69:643–654

    Article  Google Scholar 

  6. European Science Foundation (2004) Nanomedicine – an ESF–European Medical Research Councils (EMRC) forward look report, ESF, Strasbourg cedex

    Google Scholar 

  7. Webster TJ (2006) Nanomedicine: what’s in a definition? Ch. 2. Int J Nanomed 1:115–116

    Article  Google Scholar 

  8. World Health Organization (2003) Medical device regulations: global overview and guiding principles. World Health Organization, Geneva

    Google Scholar 

  9. Cheng M (2003) Medical device regulations global overview and guiding principles. WHO, Geneva

    Google Scholar 

  10. Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452:580–589

    Article  CAS  Google Scholar 

  11. Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17(5):545–580

    Article  CAS  Google Scholar 

  12. Jokerst JV, Gambhir SS (2011) Molecular imaging with theranostic nanoparticles. Acc Chem Res 44:1050–1060

    Article  CAS  Google Scholar 

  13. Weissleder R, Ross BD, Rehemtulla A, Gambhir SS (2010) Molecular imaging: principles and practice. People’s Medical Publishing House, Shelton

    Google Scholar 

  14. Jamali AA, Pourhassan-Moghaddam M, Dolatabadi JEN, Omidi Y (2014) Nanomaterials on the road to microRNA detection with optical and electrochemical nanobiosensors. TrAC Trend Anal Chem 55:24–42

    Article  CAS  Google Scholar 

  15. Liu TY, Lo CL, Huang CC, Lin SL, Chang CA (2014) Engineering nanomaterials for biosensors and therapeutics. In: Cai W (ed) Engineering in translational medicine. Springer, London, pp 513–534

    Chapter  Google Scholar 

  16. Luong JHT, Male KB, Glennon JD (2008) Biosensor technology: technology push versus market pull. Biotechnol Adv 26:492–500

    Article  CAS  Google Scholar 

  17. Privett BJ, Shin JH, Schoenfisch MH (2008) Electrochemical sensors. Anal Chem 80:4499–4517

    Article  CAS  Google Scholar 

  18. Pushkarsky I, Tseng P, Murray C, Di Carlo D (2014) Research highlights: microfluidics and magnets. Lab Chip 14:2882–2886

    Article  CAS  Google Scholar 

  19. Sung JH, Kama C, Shuler ML (2010) A microfluidic device for a pharmacokinetic–pharmacodynamic (PK–PD) model on a chip. Lab Chip 10:446–455

    Article  CAS  Google Scholar 

  20. Asiyanbola B, Soboyejo W (2008) For the surgeon: an introduction to nanotechnology. J Surg Educ 65:155–161

    Article  Google Scholar 

  21. Rosenthal SJ, McBride J, Pennycook SJ, Feldman LC (2007) Synthesis surface studies, composition and structural characterization of CdSe, core/shell and biologically active nanocrystals. Surf Sci Rep 62:111–157

    Article  CAS  Google Scholar 

  22. Michalet XF, Pinaud F, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells in vivo imaging, and diagnostics. Science 307:538–544

    Article  CAS  Google Scholar 

  23. Parak WJ, Gerion D, Pellegrino T, Zanche D, Micheel C, Williams SC, Boudreau R, Le Gros MA, Larabell CA, Alivisatos AP (2003) Biological applications of colloidal nanocrystals. Nanotechnology 14:15–27

    Article  Google Scholar 

  24. Akerman ME, Chan WC, Laakkonen P, Bhatia SN, Ruoslahti E (2002) Nanocrystal targeting in vivo. Proc Natl Acad Sci 99:12617–12621

    Article  CAS  Google Scholar 

  25. Jaiswal JK, Mattoussi H, Mauro JM, Simon SM (2002) Long-term multiple colour imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21:47–51

    Article  Google Scholar 

  26. Ye L, Yong K-T, Liu L, Roy I, Hu R, Zhu J, Cai H, Law W-C, Liu J, Wang K, Liu J, Liu Y, Hu Y, Zhang X, Swihart MT, Prasad PN (2012) A pilot study in non-human primates shows no adverse response to intravenous injection of quantum dots. Nat Nanotechnol 7:453–458

    Article  CAS  Google Scholar 

  27. Mattoussi H, Palui G, Na HB (2012) Luminescent quantum dots as platforms for probing in vitro and in vivo biological processes. Adv Drug Deliv Rev 64:138–166

    Article  CAS  Google Scholar 

  28. Na HB, Song IC, Hyeon T (2009) Inorganic nanoparticles for MRI contrast agents. Adv Mater 21:2133–2148

    Article  CAS  Google Scholar 

  29. Steinmetz NF (2010) Viral nanoparticles as platforms for next-generation therapeutics and imaging devices. Nanomedicine 6:634–641

    Article  CAS  Google Scholar 

  30. Allen M, Bulte JWM, Liepold L, Basu G, Zywicke HA, Frank JA, Young M, Douglas T (2005) Paramagnetic viral nanoparticles as potential high-relaxivity magnetic resonance contrast agents. Magn Reson Med 54:807–812

    Article  CAS  Google Scholar 

  31. Sun C, Lee JSH, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60:1252–1265

    Article  CAS  Google Scholar 

  32. Veiseh O, Gunn JW, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62(3):284–304

    Article  CAS  Google Scholar 

  33. Cormode DP, Sanchez-Gaytan BL, Mieszawska AJ, Fayad ZA, Mulder WJM (2013) Inorganic nanocrystals as contrast agents in MRI: synthesis coating and introduction of multifunctionality. NMR Biomed 26:766–780

    Article  CAS  Google Scholar 

  34. Gunasakera UA, Pankhurst QA, Douek M (2009) Imaging applications of nanotechnology in cancer. Target Oncol 4:169–181

    Article  Google Scholar 

  35. Lyubchenko YL, Kim BH, Krasnoslobodtsev AV, Yu J (2010) Nanoimaging for protein misfolding diseases. Nanomed Nanobiotechnol 2:526–543

    Article  CAS  Google Scholar 

  36. Connelly L, Jang H, Teran Arce F, Capone R, Kotler SA, Ramachandran S, Kagan BL, Nussinov R, Lal R (2012) Atomic force microscopy and MD simulations reveal pore-like structures of all-d-enantiomer of Alzheimer’s β-amyloid peptide: relevance to the ion channel mechanism of AD pathology. J Phys Chem B 116:1728–1735

    Article  CAS  Google Scholar 

  37. Burke KA, Yates EA, Legleiter J (2013) Amyloid-forming proteins alter the local mechanical properties of lipid membranes. Biochemistry 52:808–817

    Article  CAS  Google Scholar 

  38. Zou Q, Leang KK, Sadoun E, Reed MJ, Devasia S (2004) Control issues in high-speed AFM for biological applications: collagen imaging example. Asian J Control 6:164–178

    Article  Google Scholar 

  39. Voitchovsky K, Contera SA, Kamahira M, Watts A, Ryan JF (2006) Differential stiffness and lipid mobility in the leaflets of purple membranes. Biophys J 90:2075–2085

    Article  CAS  Google Scholar 

  40. Yamashita H, Voitchovsky K, Uchihashi T, Contera SA, Ryan JF, Toshio A (2009) Dynamics of bacteriorhodopsin 2D crystal observed by high-speed atomic force microscopy. J Struct Biol 167:153–158

    Article  CAS  Google Scholar 

  41. Van Mamaren J, Wuite GJL, Heller I (2011) Introduction to optical tweezers: background system designs, and commercial solutions. Methods Mol Biol 783:1–20

    Article  Google Scholar 

  42. Ermilov SA, Murdock DR, Qian F, Brownell WE, Anvari B (2007) Studies of plasma membrane mechanics and plasma membrane of plasma mem interactions using optical tweezers and fluorescence imaging. J Biomech 40:476–480

    Article  Google Scholar 

  43. Pine J, Chow G (2009) Moving live dissociated neurons with an optical tweezer. Trans Biomed Eng 56:1184–1188

    Article  Google Scholar 

  44. Oddos S, Dunsby C, Purbhoo MA, Chauveau A, Owen DM, Neil MAA, Davis DM, French PMW (2008) High-speed high-resolution imaging of intercellular immune synapses using optical tweezers. Biophys J 95:66–68

    Article  Google Scholar 

  45. Ashok PC, Dholakia K (2012) Optical trapping for analytical biotechnology. Curr Opin Biotechnol 23:16–21

    Article  CAS  Google Scholar 

  46. Blesener T, Mondal A, Menon JU, Nguyen KT, Mohanty S (2013) Optical tweezers based measurement of PLGA-NP interaction with prostate cancer cells. Prog Biomed Opt Imaging – Proc SPIE 8594, Article no. 859407

    Google Scholar 

  47. Nakamura H, Karube I (2003) Current research activity in biosensors. Anal Bioanal Chem 377:446–468

    Article  CAS  Google Scholar 

  48. Grieshaber D, MacKenzie R, Voros J, Reimhult E (2008) Electrochemical biosensors – sensor principles and architectures. Sensors 8:1400–1458

    Article  CAS  Google Scholar 

  49. Velasco-Garcia MN (2009) Optical biosensors for probing at the cellular level: a review of recent progress and future prospects. Sem Cell Dev Biol 20:27–33

    Article  CAS  Google Scholar 

  50. Dey D, Goswami T (2011) Optical biosensors: a revolution towards quantum nanoscale electronics device fabrication. J Biomed Biotechnol, Article no. 348218, 7 pages, 2011. doi:10.1155/2011/348218

  51. Tombelli S, Minunni M, Mascini M (2005) Piezoelectric biosensors: strategies for coupling nucleic acids to piezoelectric devices. Methods 37:48–56

    Article  CAS  Google Scholar 

  52. Cooper MA (2003) Label-free screening of bio-molecular interactions. Anal Bioanal Chem 377:834–842

    Article  CAS  Google Scholar 

  53. Davis JJ, Coleman KS, Azamian BR, Bagshaw CB, Green MLH (2003) Chemical and biochemical sensing with modified single walled carbon nanotubes. Chem Eur J 9:3732–3739

    Article  CAS  Google Scholar 

  54. Du D, Chen S, Song D, Li H, Chen X (2008) Development of acetylcholinesterase biosensor based on CdTe quantum dots/gold nanoparticles modified chitosan microspheres interface. Biosens Bioelectron 24:475–479

    Article  CAS  Google Scholar 

  55. Deng Z, Zhang Y, Yue J, Tang F, Wei Q (2007) Green and orange CdTe quantum dots as effective pH-sensitive fluorescent probes for dual simultaneous and independent detection of viruses. J Phys Chem 111:12024–12031

    Article  CAS  Google Scholar 

  56. Zhang X, Guo Q, Cui D (2009) Recent advances in nanotechnology applied to biosensors. Sensor 9:1033–1053

    Article  CAS  Google Scholar 

  57. Li NB, Park JH, Park K, Kwon SJ, Shin H, Kwak J (2008) Characterization and electrocatalytic properties of Prussian blue electrochemically deposited on nano-Au/PAMAM dendrimer-modified gold electrode. Biosens Bioelectron 23:1519–1526

    Article  CAS  Google Scholar 

  58. Abbas A, Fei M, Tian L, Singamaneni S (2013) Trapping proteins within gold nanoparticle assemblies: dynamically tunable hot-spots for nanobiosensing. Plasmonics 8:537–544

    CAS  Google Scholar 

  59. Dorvel BR, Reddy B, Go J, Duarte Guevara C, Salm E, Alam MA, Bashir R (2012) Silicon nanowires with high-k hafnium oxide dielectrics for sensitive detection of small nucleic acid oligomers. ACS Nano 6:6150–6164

    Article  CAS  Google Scholar 

  60. Lakshmi D, Bossi A, Whitcombe MJ, Chianella I, Fowler SA, Subrahmanyam S, Piletska EV, Piletsky SA (2009) Electrochemical sensor for catechol and dopamine based on a catalytic molecularly imprinted polymer-conducting polymer hybrid recognition element. Anal Chem 81:3576–3584

    Article  CAS  Google Scholar 

  61. Piletsky SA, et al. (2005) Molecularly imprinted polymers-tyrosinase mimics. Ukrainskii biokhimicheskii zhurnal 77.6:63

    CAS  Google Scholar 

  62. Vasapollo G, Del Sole R, Mergola L, Lazzoi MR, Scardino A, Scorrano S, Mele G (2011) Molecularly imprinted polymers: present and future prospective. Int J Mol Sci 12:5908–5945

    Article  CAS  Google Scholar 

  63. Berti F, Todrosb S, Lakshmi D, Whitcombec MJ, Chianellac I, Ferronib M, Piletskyc SA, Turnerc APF, Marrazzaa G (2010) Quasi-monodimensional polyaniline nanostructures for enhanced molecularly imprinted polymer-based sensing. Biosens Bioelectron 26:497–503

    Article  CAS  Google Scholar 

  64. Akbulut M, Lakshmi D, Whitcombe MJ, Piletska EV, Chianella I, Guven O, Piletsky SA (2011) Microplates with adaptive surfaces. ACS Comb Sci 13:646–652

    Article  CAS  Google Scholar 

  65. Ivanova-Mitseva PK, Fragkou V, Lakshmi D, Whitcombe MJ, Davis F, Guerreiro A, Crayston JA, Ivanova DK, Mitsev PA, Piletska EV, Piletsky SA (2011) Conjugated polymers with pendant iniferter units: versatile materials for grafting. Macromolecules 44:1856–1865

    Article  CAS  Google Scholar 

  66. Dixit CK, Kaushik A (2012) Nano-structured arrays for multiplex analyses and lab-on-a-chip applications. Biochem Biophys Res Commun 419:316–320

    Article  CAS  Google Scholar 

  67. Jain KK (2007) Nanotechnology in medical practice. Med Princ Pract 17:89–101

    Article  Google Scholar 

  68. Shen N, Datta D, Schaffer CB, LeDuc P, Ingber DE, Mazur E (2005) Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser nanoscissor. Mech Chem Biosys 2:17–25

    Google Scholar 

  69. Uchugonova A, Zhang H, Lemke C, König K (2011) Nanosurgery with near-infrared 12-femtosecond and picosecond laser pulses. Prog Biomed Opt Imaging –Proc SPIE 7903, Article no. 79031N

    Google Scholar 

  70. Tserevelakis GJ, Psycharakis S, Resan B, Brunner F, Gavgiotaki E, Weingarten K, Filippidis G (2012) Femtosecond laser nanosurgery of sub-cellular structures in HeLa cells by employing Third Harmonic Generation imaging modality as diagnostic too. J Biophotonics 5:200–220

    Article  Google Scholar 

  71. Beard JD, Gordeev SN, Guy RH (2011) AFM nanotools for surgery of biological cells. J Phys Conf Ser 286, Article no. 012003

    Google Scholar 

  72. Song B, Yang R, Xi N, Patterson KC, Qu C, Lai KWC (2012) Cellular-level surgery using nano robots. J Lab Autom 17:425–434

    Article  CAS  Google Scholar 

  73. Boisseau P, Loubaton B (2011) Nanomedicine, nanotechnology in medicine. C R Phys 12:620–636

    Article  CAS  Google Scholar 

  74. Murday, James S., et al. (2009) Translational nanomedicine: status assessment and opportunities. Nanomedicine: Nanotechnology, Biology and Medicine 5.3:251–273

    Google Scholar 

  75. Duke T (2003) Hair bundles: nano-mechanosensors in the inner ear. J Phys Condens Matter 15:1747–1757

    Article  Google Scholar 

  76. Alteheld N, Roessler G, Walter P (2007) Towards the bionic eye – the retina implant: surgical, opthalmological and histopathological perspectives. Acta Neurochir Suppl 97:487–493

    Article  CAS  Google Scholar 

  77. Keserü M, Feucht M, Bornfeld N, Laube T, Walter P, Rössler G, Velikay-Parel M, Hornig R, Richard G (2012) Acute electrical stimulation of the human retina with an epiretinal electrode array. Acta Ophthalmol 90:1–8

    Article  Google Scholar 

  78. Liu-Snyder P, Webster TJ (2008) Developing a new generation of bone cements with nanotechnology. Curr Nanosci 4:111–118

    Article  CAS  Google Scholar 

  79. Khang D, Lu J, Yao C, Haberstroh KM, Webster TJ (2008) The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium. Biomaterials 29:970–983

    Article  CAS  Google Scholar 

  80. Wang F, Shi L, He W-X, Han D, Yan Y, Niu Z-Y, Shi S-G (2013) Bioinspired micro/nano fabrication on dental implant-bone interface. Appl Surf Sci 265:480–488

    Article  CAS  Google Scholar 

  81. Hersel U, Dahmen C, Kessler H (2003) RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24:4385–4415

    Article  CAS  Google Scholar 

  82. Bae YH, Park K (2011) Targeted drug delivery to tumors: myths reality and possibility. J Control Release 153:198–205

    Article  CAS  Google Scholar 

  83. Green M, Howman E (2005) Semiconductor quantum dots and free radical induced DNA nicking. Chem Commun 1:121–123

    Google Scholar 

  84. Hankin S, Boraschi D, Dushci A, Lehr CM, Lechtenbeld H (2011) Towards nanotechnology regulation – publish the unpublishable. Nanotoday 6:228–231

    Article  Google Scholar 

  85. Krug HF, Wick P (2011) Nanotoxicology: an interdisciplinary challenge. Angew Chem Int Ed 50:1260–1278

    Article  CAS  Google Scholar 

  86. Savolainen K, Aleniusa H, Norppa H, Pylkkänen L, Tuomi T, Kasper G (2010) Risk assessment of engineered nanomaterials and nanotechnologies – a review. Toxicology 269:92–104

    Article  CAS  Google Scholar 

  87. Nel A, Xi T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  Google Scholar 

  88. Seaton A, Tran L, Aitken R, Donaldson K (2010) Nanoparticles human health hazard and regulation. J R Soc Interface 7:119–129

    Article  Google Scholar 

  89. Howard J (2011) Dynamic oversight: implementation gaps and challenges. J Nanopart Res 13:1427–1434

    Article  Google Scholar 

  90. Bellan LM, Wu D, Langer RS (2011) Current trends in nanobiosensor technology. Nanomed Nanobiotechnol 3:229–246

    Article  CAS  Google Scholar 

  91. Wedmid A, Llukani E, Lee DI (2011) Future perspectives in robotic surgery. BJU Int 108:1028–1103

    Article  Google Scholar 

  92. Cooper, Matthew A, Victoria T. Singleton (2007) A survey of the 2001 to 2005 quartz crystal microbalance biosensor literature: applications of acoustic physics to the analysis of biomolecular interactions”. Journal of Molecular Recognition 20.3:154–184

    Article  CAS  Google Scholar 

  93. Caldorera-Moore, Mary, Nicholas A. Peppas (2009) Micro-and nanotechnologies for intelligent and responsive biomaterial-based medical systems. Advanced drug delivery reviews 61.15:1391–1401

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Ge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Habib-Ullah, S., Fei, D., Ge, Y. (2014). Nanotechnology in Advanced Medical Devices. In: Ge, Y., Li, S., Wang, S., Moore, R. (eds) Nanomedicine. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2140-5_8

Download citation

Publish with us

Policies and ethics