Skip to main content

Medical Nanobiosensors

  • Chapter
  • First Online:
Nanomedicine

Part of the book series: Nanostructure Science and Technology ((NST))

  • 1742 Accesses

Abstract

Diagnostic technology is a vital field for the progress of healthcare and medicine. The most conventional techniques of diagnostic technologies (such as ELISA and PCR) report different handicaps including high cost and time consuming labors. In this regard, novel advances in diagnostic technology are highly desired. Biosensors are useful devices that enable the detection of molecules with diagnostic interest. Since nanotechnology enables the manipulation and control at the nanoscale, biosensors based on nanotechnology or nanobiosensors offer powerful capabilities to diagnostic technology. Here we describe the basic principles of the nanobiosensors and discuss different nanobiosensing strategies towards medical applications focused on three categories: neurodegenerative diseases, cardiovascular diseases and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Abs:

Antibodies

AD:

Alzheimer’s disease

AuNPs:

Gold nanoparticles

CA125:

Cancer antigen 125

CA15-3:

Cancer antigen 15-3

CEA:

Carcionoembryonic antigen

CJD:

Creutzfeldt-Jakob disease

CNTs:

Carbon nanotubes

cTnT:

Cardiac troponin-T

EGFR:

Epidermal growth factor receptor

ELISA:

Enzyme linked immunosorbent assay

FRET:

Fluorescence resonance energy transfer

HER2:

Human epidermal growth factor receptor 2

HRP:

Horseradish peroxidase

IUPAC:

International Union of Pure and Applied Chemistry

MMP-9:

Matrix metalloproteinase 9

MNPs:

Magnetic nanoparticles

MWCNTs:

Multi-walled carbon nanotubes

oxLDL:

Oxidized low density lipoprotein

PCR:

Polymerase chain reaction

PD:

Parkinson’s disease

PrP:

Prion proteins

PSA:

Prostate specific antigen

QDs:

Quantum dots

SWCNT:

Single-walled carbon nanotubes

References

  1. O’Farrel B (2009) Evolution in lateral flow–based immunoassay systems. In: Wong RC, Tse HY (eds) Lateral flow immunoassay. Humana Press, New York, pp 1–33

    Google Scholar 

  2. Turner APF (2013) Biosensors: then and now. Trends Biotechnol 31:119–120

    CAS  Google Scholar 

  3. Mascini M, Palchetti I (2014) Biosensors, electrochemical. Encycl Appl Electrochem 136–140

    Google Scholar 

  4. Schallmey M, Frunzke J, Eggeling L et al (2014) Looking for the pick of the bunch: high-throughput screening of producing microorganisms with biosensors. Curr Opin Biotechnol 26:148–154

    CAS  Google Scholar 

  5. Gdowski A, Ranjan A, Mukerjee A et al (2014) Nanobiosensors: role in cancer detection and diagnosis. Infect Dis Nanomed I 807:33–58, Springer India

    Google Scholar 

  6. Sagadevan S, Periasamy M (2014) Recent trends in nanobiosensors and their applications-a review. Rev Adv Mater Sci 36:62–69

    Google Scholar 

  7. Song S, Wang L, Li J et al (2008) Aptamer-based biosensors. TrAC Trend Anal Chem 27:108–117

    CAS  Google Scholar 

  8. Mairal T, Ozalp VC, Lozano Sánchez P et al (2008) Aptamers: molecular tools for analytical applications. Anal Bioanal Chem 390:989–1007

    CAS  Google Scholar 

  9. Ruigrok VJB, Levisson M, Eppink MHM et al (2011) Alternative affinity tools: more attractive than antibodies? Biochem J 436:1–13

    CAS  Google Scholar 

  10. Li H, Liu S, Dai Z, Bao J, Yang X (2009) Applications of nanomaterials in electrochemical enzyme biosensors. Sensors 9:8547–8561

    CAS  Google Scholar 

  11. Leca-Bouvier BD, Blum LJ (2010) Enzyme for biosensing applications. In: Zourob M (ed) Recognition receptors in biosensors. Springer, New York, pp 177–220

    Google Scholar 

  12. Suman AK (2008) Recent advances in DNA biosensor. Sens Transducers J 92:122–133

    CAS  Google Scholar 

  13. Kubik T, Bogunia-Kubik K, Sugisaka M (2005) Nanotechnology on duty in medical applications. Curr Pharm Biotechnol 6:17–33

    CAS  Google Scholar 

  14. Gruner G (2006) Carbon nanotube transistors for biosensing applications. Anal Bioanal Chem 384:322–335

    CAS  Google Scholar 

  15. Lee J-H, Oh B-K, Choi B (2010) Electrical detection-based analytic biodevice technology. BioChip J 4:1–8

    Google Scholar 

  16. Vo-Dinh T, Cullum B (2000) Biosensors and biochips: advances in biological and medical diagnostics. Fresenius J Anal Chem 366:540–551

    CAS  Google Scholar 

  17. Fritz J (2008) Cantilever biosensors. Analyst 133:855–863

    CAS  Google Scholar 

  18. Ramanathan K, Danielsson B (2011) Principles and applications of thermal biosensors. Biosens Bioelectron 16:417–423

    Google Scholar 

  19. Hu X, Dong S (2008) Metal nanomaterials and carbon nanotubes – synthesis, functionalization and potential applications towards electrochemistry. J Mater Chem 18:1279–1295

    CAS  Google Scholar 

  20. Martin AL, Li B, Gillies ER (2009) Surface functionalization of nanomaterials with dendritic groups: toward enhanced binding to biological targets. J Am Chem Soc 131:734–741

    CAS  Google Scholar 

  21. Prencipe G, Tabakman SM, Welsher K (2009) PEG branched polymer for functionalization of nanomaterials with ultralong blood circulation. J Am Chem Soc 131:4783–4787

    CAS  Google Scholar 

  22. Liu Z, Kiessling F, Gaetjens J (2010) Advanced nanomaterials in multimodal imaging: design, functionalization, and biomedical applications. J Nanomater 894303

    Google Scholar 

  23. Mehdi A, Reye C, Corriu R (2011) From molecular chemistry to hybrid nanomaterials. Design and functionalization. Chem Soc Rev 40:563–574

    CAS  Google Scholar 

  24. Alivisatos AP, Gu W, Larabell C (2005) Quantum dots as cellular probes. Annu Rev Biomed Eng 7:55–76

    CAS  Google Scholar 

  25. Jiang W, Singhal A, Fischer H (2006) Engineering biocompatible quantum dots for ultrasensitive, real-time biological imaging and detection. In: Ferrari M, Desai T, Bhatia S (eds) BioMEMS and biomedical nanotechnology. Springer, New York City, pp 137–156

    Google Scholar 

  26. Bruchez M, Morronne M, Gin P et al (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    CAS  Google Scholar 

  27. Chan W, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018

    CAS  Google Scholar 

  28. Algar WR, Tavares AJ, Krull UJ (2010) Beyond labels: a review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction. Anal Chim Acta 673:1–25

    CAS  Google Scholar 

  29. Rosenthal SJ, Chang JC, Kovtun O et al (2011) Biocompatible quantum dots for biological applications. Chem Biol 18:10–24

    CAS  Google Scholar 

  30. Liu S, Leech D, Ju H (2003) Application of colloidal gold in protein immobilization. Anal Lett 36:1–19

    CAS  Google Scholar 

  31. Katz E, Willner I, Wang J (2004) Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanalysis 16:19–44

    CAS  Google Scholar 

  32. Yáñez-Sedeño P, Pingarrón JM (2005) Gold nanoparticle-based electrochemical biosensors. Anal Bioanal Chem 382:884–886

    Google Scholar 

  33. Pankhurst Q (2006) Nanomagnetic medical sensors and treatment methodologies. BT Technol J 24:33–38

    Google Scholar 

  34. Roca AG, Costo R, Rebolledo AF et al (2009) Progress in the preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 42:224002

    Google Scholar 

  35. Sandhu A, Handa H, Abe M (2010) Synthesis and applications of magnetic nanoparticles for biorecognition and point of care medical diagnostics. Nanotechnology 21:442001

    Google Scholar 

  36. Wang J (2005) Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17:7–14

    CAS  Google Scholar 

  37. Balasubramanian K, Burghard M (2006) Biosensors based on carbon nanotubes. Anal Bioanal Chem 385:452–468

    CAS  Google Scholar 

  38. Davis JJ, Coleman KS, Azamian BR (2003) Chemical and biochemical sensing with modified single walled carbon nanotubes. Chemistry 9:3732–3739

    CAS  Google Scholar 

  39. Zhao Q, Gan Z, Zhuang Q (2002) Electrochemical sensors based on carbon nanotubes. Electroanalysis 14:1609–1613

    CAS  Google Scholar 

  40. Compton RG, Wildgoose GG, Wong ELS (2009) In carbon nanotube–based sensors and biosensors. In: Merkoçi AE (ed) Biosensing using nanomaterials. Wiley, Hoboken, NJ, USA, pp 1–38

    Google Scholar 

  41. Huo Z, Tsung C-kuang, Huang W et al (2008) Sub-two nanometer single crystal Au. Nano Lett 8:2041–2044

    Google Scholar 

  42. Wang J, Liu C, Lin Y (2007) Nanotubes, nanowires, and nanocantilevers in biosensor development. In: Kumar CSSR (ed) Nanomaterials for biosensors. WILEY, Hoboken, NJ, USA, pp 56–100

    Google Scholar 

  43. Cui Y, Wei Q, Park H, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293:1289–1292

    CAS  Google Scholar 

  44. Patolsky F, Zheng G, Lieber CM et al (2006) Nanowire sensors for medicine and the life sciences. Nanomedicine 1:51–65

    CAS  Google Scholar 

  45. Hangarter CM, Bangar M, Mulchandani A, Myung NV (2010) Conducting polymer nanowires for chemiresistive and FET-based bio/chemical sensors. J Mater Chem 20:3131–3140

    CAS  Google Scholar 

  46. Wang J, Manesh KM (2010) Motion control at the nanoscale. Small 6:338–345

    CAS  Google Scholar 

  47. Wang C, Hossain M, Ma L et al (2010) Highly sensitive thermal detection of thrombin using aptamer-functionalized phase change, nanoparticles. Biosens Bioelectron 26:437–443

    Google Scholar 

  48. Shao Y, Wang J, Wu H (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22:1027–1036

    CAS  Google Scholar 

  49. Pumera M (2011) Graphene in biosensing. Mater Today 14:308–315

    CAS  Google Scholar 

  50. Chambers G, Lawrie L, Cash P, Murray G (2000) Proteomics: a new approach to the study of disease. J Pathology 192:280–288

    CAS  Google Scholar 

  51. Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 430:631–639

    CAS  Google Scholar 

  52. Bild AH, Yao G, Chang JT et al (2006) Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439:353–357

    CAS  Google Scholar 

  53. Alizadeh AA, Eisen MB, Davis RE et al (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403:503–511

    CAS  Google Scholar 

  54. Takeda M, Martínez R, Kudo T (2010) Apolipoprotein E and central nervous system disorders: reviews of clinical findings. Psychiatry Clin Neurosci 64:592–607

    CAS  Google Scholar 

  55. Ray S, Britschgi M, Herbert C (2007) Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nat Med 13:1359–1362

    CAS  Google Scholar 

  56. Palop JJ, Mucke L (2010) Amyloid-[beta]-induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nat Neurosci 13:812–818

    CAS  Google Scholar 

  57. Khan S, Klein W, Mirkin C et al (2005) Fluorescent and scanometric ultrasensitive detection technologies with the bio-bar code assay for Alzheimer’s disease diagnosis. Nanoscape 2:7–15

    Google Scholar 

  58. Nam J-M, Park S-J, Mirkin CA (2002) Bio-barcodes based on oligonucleotide-modified nanoparticles. J Am Chem Soc 124:3820–3821

    CAS  Google Scholar 

  59. Haes AJ, Chang L, Klein WL, Duyne RP (2005) Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. J Am Chem Soc 127:2264–2271

    CAS  Google Scholar 

  60. Lee J, Kang D, Lee T (2009) Signal enhancement of surface plasmon resonance based immunosensor using gold nanoparticle-antibody complex for beta-amyloid (1–40) detection. J Nanosci Nanotechnol 9:7155–7160

    CAS  Google Scholar 

  61. Piliarik M, Vaisocherová H, Homola J (2009) Surface plasmon resonance biosensing. In: Rasooly A, Herold KE (eds) Biosensors and biodetection. Humana Press, New York, pp 65–88

    Google Scholar 

  62. Han S-H, Chang YJ, Jung ES et al (2011) Effective screen for amyloid β aggregation inhibitor using amyloid β-conjugated gold nanoparticles. Int J Nanomedicine 6:1–12

    Google Scholar 

  63. Morales-Narv.ez E, Mont.n H, Fomicheva A, Merko.i A (2012) Signal enhancement in antibody microarrays using quantum dots nanocrystals: application to potential Alzheimer’s disease biomarker screening. Anal Chem 84:6821–6827

    Google Scholar 

  64. Michell AW, Lewis SJG, Foltynie T, Barker R (2004) Biomarkers and Parkinson’s disease. Brain 127:1693–1705

    CAS  Google Scholar 

  65. Volkow ND, Fowler JS, Wang GJ, Swanson JM (2004) Dopamine in drug abuse and addiction: results from imaging studies and treatment implications. Mol Psychiatry 9:557–569

    CAS  Google Scholar 

  66. Naranjo CA, Tremblay LK, Busto UE (2011) The role of the brain reward system in depression. Prog Neuropsychopharmacol Biol Psychiatry 25:781–823

    Google Scholar 

  67. Lang AE, Lozano AM (1998) Parkinson’s disease. N Engl J Med 339:1044

    CAS  Google Scholar 

  68. Kapur S, Mamo D (2003) Half a century of antipsychotics and still a central role for dopamine D2 receptors. Prog Neuropsychopharmacol Biol Psychiatry 27:1081–1090

    CAS  Google Scholar 

  69. Ali SR, Ma Y, Parajuli RR et al (2007) A nonoxidative sensor based on a self-doped polyaniline/carbon nanotube composite for sensitive and selective detection of the neurotransmitter dopamine. Anal Chem 79:2583–2587

    CAS  Google Scholar 

  70. Alwarappan S, Liu GD, Li CZ (2010) Simultaneous detection of dopamine, ascorbic acid, and uric acid at electrochemically pretreated carbon nanotube biosensors. Nanomedicine 6:52–57

    CAS  Google Scholar 

  71. Alarcón-Angeles G, Pérez-López B, Palomar-Pardave M et al (2008) Enhanced host–guest electrochemical recognition of dopamine using cyclodextrin in the presence of carbon nanotubes. Carbon 46:898–906

    Google Scholar 

  72. Wang Y, Li Y, Tang L (2009) Application of graphene-modified electrode for selective detection of dopamine. Electrochem Commun 11:889–892

    CAS  Google Scholar 

  73. Zheng Y, Wang Y, Yang X (2011) Aptamer-based colorimetric biosensing of dopamine using unmodified gold nanoparticles. Sens Actuators B 156:95–99

    CAS  Google Scholar 

  74. Maltête D, Guyant-Maréchal L, Mihout B, Hannequin D (2006) Movement disorders and Creutzfeldt-Jakob disease: a review. Parkinsonism Relat Disord 12:65–71

    Google Scholar 

  75. Triantaphyllidou IE, Sklaviadis T, Vynios DH (2006) Detection, quantification, and glycotyping of prion protein in specifically activated enzyme-linked immunosorbent assay plates. Anal Biochem 359:176–182

    CAS  Google Scholar 

  76. Kouassi GK, Wan P, Sreevatan S, Irudayaraj J (2007) Aptamer-mediated magnetic and gold-coated magnetic nanoparticles as detection assay for prion protein assessment. Biotechnol Prog 23:1239–1244

    CAS  Google Scholar 

  77. Varshney M, Waggoner PS, Montagna RA, Craighead HG (2009) Prion protein detection in serum using micromechanical resonator arrays. Talanta 80:593–599

    CAS  Google Scholar 

  78. Hu PP, Chen LQ, Liu C et al (2010) Ultra-sensitive detection of prion protein with a long range resonance energy transfer strategy. Chem Commun 46:8285–8287

    CAS  Google Scholar 

  79. Zhang L-Y, Zheng H-Z, Long Y-J et al (2011) CdTe quantum dots as a highly selective probe for prion protein detection: colorimetric qualitative, semi-quantitative and quantitative detection. Talanta 83:1716–1720

    CAS  Google Scholar 

  80. Allender S, Scarborough P, Peto V, Rayner M, Leal J, Luengo-Fernandez R et al (2008) European cardiovascular disease statistics, 2008 edition, 3rd edn. European Heart Network, Brussels

    Google Scholar 

  81. Chang K, Chiu J (2005) Clinical applications of nanotechnology in atherosclerotic diseases. Curr Nanosci 1:107–115

    CAS  Google Scholar 

  82. Nature Biotechnology (2000) Prognostic/diagnostic testing and a raft of new drug targets from genomics promise to transform cardiovascular medicine. Nat Biotechnol 18:IT15–IT17

    Google Scholar 

  83. Blankenberg S, Rupprecht HJ, Poirier O et al (2003) Plasma concentrations and genetic variation of matrixmetalloproteinase 9 and prognosis of patients with cardiovascular disease. Circulation 107:1579–1585

    CAS  Google Scholar 

  84. Martín-ventura JL, Blanco-colio LM, Tuñón J et al (2009) Biomarkers in cardiovascular medicine. Revista Española de Cardiología 62:677–688

    Google Scholar 

  85. Schellenberger E, Rudloff F, Warmuth C (2008) Protease-specific nanosensors for magnetic resonance imaging. Bioconjug Chem 19:2440–2445

    CAS  Google Scholar 

  86. McCarthy JR (2011) Nanomedicine and cardiovascular disease. Curr Cardiovasc Imaging Rep 3:42–49

    Google Scholar 

  87. Holland CA, Henry AT, Whinna HC, Church FC (2010) Effect of oligodeoxynucleotide thrombin aptamer on thrombin inhibition by heparin cofactor II and antithrombin. FEBS Lett 484:87–91

    Google Scholar 

  88. Tracy RP (2003) Thrombin inflammation, and cardiovascular disease: an epidemiologic perspective cardiovascular disease. Chest 124:49s–57s

    CAS  Google Scholar 

  89. Pavlov V, Xiao Y, Shlyahovsky B et al (2004) Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin. J Am Chem Soc 126:11768–11769

    CAS  Google Scholar 

  90. Chang H, Tang L, Wang Y et al (2010) Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Anal Chem 82:2341–2346

    CAS  Google Scholar 

  91. Schäferling M, Nagl S (2011) Förster resonance energy transfer for quantification of protein–protein interactions on microarrays. In: Wu CJ (ed) Protein microarray for disease analysis: methods and protocols. Springer, London, pp 303–320

    Google Scholar 

  92. Chen C-K, Huang C-C, Chang H-T (2010) Label-free colorimetric detection of picomolar thrombin in blood plasma using a gold nanoparticle-based assay. Biosens Bioelectron 25:1922–1927

    CAS  Google Scholar 

  93. Apple FS (1999) Tissue specificity of cardiac troponin I, cardiac troponin T and creatine kinase-MB. Clin Chim Acta 284:151–159

    CAS  Google Scholar 

  94. Chua JH, Chee R-E, Agarwal A et al (2009) Label-free electrical detection of cardiac biomarker with complementary metal-oxide semiconductor-compatible silicon nanowire sensor arrays. Anal Chem 81:6266–6271

    CAS  Google Scholar 

  95. Mayilo S, Kloster MA, Wunderlich M et al (2009) Long-range fluorescence quenching by gold nanoparticles in a sandwich immunoassay for cardiac troponin T. Nano Lett 9:4558–4563

    CAS  Google Scholar 

  96. Austin M (1994) Small, dense low-density lipoprotein as a risk factor for coronary heart disease. Int J Clin Lab Res 24:187–192

    CAS  Google Scholar 

  97. Rouhanizadeh M, Tang T, Li C (2006) Differentiation of oxidized low density lipoproteins by nanosensors. Sens Actuators B 114:788–798

    CAS  Google Scholar 

  98. McDonnell B, Hearty S, Leonard P, O’Kennedy R (2009) Cardiac biomarkers and the case for point-of-care testing. Clin Biochem 42:549–561

    CAS  Google Scholar 

  99. Suprun E, Bulko T, Lisitsa A (2010) Electrochemical nanobiosensor for express diagnosis of acute myocardial infarction in undiluted plasma. Biosens Bioelectron 25:1694–1698

    CAS  Google Scholar 

  100. Jemal A, Bray F, Ferlay J (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Google Scholar 

  101. Sawyers CL (2008) The cancer biomarker problem. Nature 452:548–552

    CAS  Google Scholar 

  102. Novak K (2006) Biomarkers: taking out the trash. Nat Rev Cancer 6:92

    CAS  Google Scholar 

  103. Perfézou M, Turner A, Merkoçi A (2011) Cancer detection using nanoparticle-based sensors. Chem Soc Rev 7:2606–2622

    Google Scholar 

  104. Bohunicky B, Mousa S (2011) Biosensors: the new wave in cancer diagnosis. Nanotechnol Sci Appl 4:1–10

    CAS  Google Scholar 

  105. Fang Z, Kelley SO (2009) Direct electrocatalytic mRNA detection using PNA-nanowire sensors, Analytical chemistry 81:612–617

    Google Scholar 

  106. Waggoner PS, Varshney M, Craighead HG (2009) Detection of prostate specific antigen with nanomechanical resonators. Lab Chip 9:3095–3099

    CAS  Google Scholar 

  107. Storhoff J, Lubben T, Lefebvre P et al (2008) Detection of prostate cancer recurrence using an ultrasensitive nanoparticle-based PSA assay In: Journal of Clinical Oncology. 45th annual meeting of the American-Society-of-Clinical-Oncology, Orlando, p e16146

    Google Scholar 

  108. Oliver C (1994) Use of immunogold with silver enhancement. In: Javois LC (ed) Immunocytochemical methods and protocols, vol 34. Springer, New York, pp 211–216

    Google Scholar 

  109. de la Escosura-Muñiz A, Merkoçi A (2011) A nanochannel/nanoparticle-based filtering and sensing platform for direct detection of a cancer biomarker in blood. Small 7:675–682

    Google Scholar 

  110. Zhong Z, Wu W, Wang D (2010) Nanogold-enwrapped graphene nanocomposites as trace labels for sensitivity enhancement of electrochemical immunosensors in clinical immunoassays: carcinoembryonic antigen as a model. Biosens Bioelectron 25:2379–2383

    CAS  Google Scholar 

  111. Myung S, Solanki A, Kim C et al (2011) Graphene-encapsulated nanoparticle-based biosensor for the selective detection of cancer biomarkers. Adv Mater (Deerfield Beach, Fla) 23:2221–2225

    CAS  Google Scholar 

  112. Qian J, Dai H, Pan X, Liu S (2011) Simultaneous detection of dual proteins using quantum dots coated silica nanoparticles as labels. Biosens Bioelectron 28:314–319

    CAS  Google Scholar 

  113. Jokerst JV, Raamanathan A, Christodoulides N et al (2009) Nano-bio-chips for high performance multiplexed protein detection: determinations of cancer biomarkers in serum and saliva using quantum dot bioconjugate labels. Biosens Bioelectron 24:3622–3629

    CAS  Google Scholar 

  114. Ng AHC, Uddayasankar U, Wheeler AR (2010) Immunoassays in microfluidic systems. Anal Bioanal Chem 397:991–1007

    CAS  Google Scholar 

  115. Jain KK (2010) Advances in the field of nanooncology. BMC Med 8:83

    CAS  Google Scholar 

  116. de la Escosura-Muñiz A, Sánchez-Espinel C, Díaz-Freitas B et al (2009) Rapid identification and quantification of tumor cells using an electrocatalytic method based on gold nanoparticles. Anal Chem 81:10268–10274

    Google Scholar 

  117. Deng T, Li J, Zhang L-L et al (2010) A sensitive fluorescence anisotropy method for the direct detection of cancer cells in whole blood based on aptamer-conjugated near-infrared fluorescent nanoparticles. Biosens Bioelectron 25:1587–1591

    CAS  Google Scholar 

  118. Maltez-da Costa M, de la Escosura-Muñiz A, Nogués C et al (2012) Simple monitoring of cancer cells using nanoparticles. Nano Lett 12:4164–4171

    CAS  Google Scholar 

  119. Oghabian M, Jeddi-Tehrani M, Zolfaghari A (2011) Detectability of Her2 positive tumors using monoclonal antibody conjugated iron oxide. J Nanosci Nanotechnol 11:5340–5344

    CAS  Google Scholar 

  120. Rasaneh S, Rajabi H, Babaei M (2011) MRI contrast agent for molecular imaging of the HER2/neu receptor using targeted magnetic nanoparticles. J Nanopart Res 13:2285–2293

    CAS  Google Scholar 

  121. Perry M, Li Q, Kennedy RT (2009) Review of recent advances in analytical techniques for the determination of neurotransmitters. Anal Chim Acta 653:1–22

    CAS  Google Scholar 

  122. Morales-Narváez E, Montón H, Fomicheva A, Merkoçi A (2012) Signal enhancement in antibody microarrays using quantum dots nanocrystals: application to potential Alzheimer’s disease biomarker screening. Anal Chem 84:6821–6827

    Google Scholar 

  123. Ambrosi A, Airò F, Merkoçi A (2009) Enhanced gold nanoparticle based ELISA for breast cancer biomarker. Anal Chem 82:1151–1156

    Google Scholar 

  124. Ambrosi A, De La Escosura-Muñiz A, Castañeda MT, Merkoçi A (2009) Gold nanoparticles: a versatile label for affinity. In: Merkoçi A (ed) Biosensing using nanomaterials. Wiley, Hoboken, NJ, USA, pp 177–197

    Google Scholar 

  125. Brambilla D, Le Droumaguet B, Nicolas J et al (2011) Nanotechnologies for Alzheimer’s disease: diagnosis, therapy, and safety issues. Nanomedicine 7(5):521–540

    CAS  Google Scholar 

  126. Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45

    CAS  Google Scholar 

  127. Donzella V, Crea F (2011) Optical biosensors to analyze novel biomarkers in oncology. J Biophotonics 4:442–452

    CAS  Google Scholar 

  128. Ehara S, Ueda M, Naruko T et al (2001) Elevated levels of oxidized low density lipoprotein show a positive relationship with the severity of acute coronary syndromes. Circulation 103:1955–1960

    CAS  Google Scholar 

  129. Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5:161–171

    CAS  Google Scholar 

  130. Godin B, Sakamoto J, Serda R (2010) Emerging applications of nanomedicine for therapy and diagnosis of cardiovascular diseases. Trends Pharmacol Sci 31:199–205

    CAS  Google Scholar 

  131. Jayagopal A, Linton MRF, Fazio S, Haselton FR (2010) Insights into atherosclerosis using nanotechnology. Curr Atheroscler Rep 12:209–215

    CAS  Google Scholar 

  132. Kong LX, Peng Z, Sugumar D (2006) Management of cardiovascular diseases with micro systems and nanotechnology. J Nanosci Nanotechnol 6:2754–2761

    CAS  Google Scholar 

  133. Morales-Narváez E, Merkoçi A (2012) Graphene oxide as an optical biosensing platform. Adv Mater 24:3298–3308

    Google Scholar 

  134. Soper SA, Brown K, Ellington A et al (2006) Point-of-care biosensor systems for cancer diagnostics/prognostics. Biosens Bioelectron 21:1932–1942

    CAS  Google Scholar 

  135. Veiseh O, Kievit FM, Ellenbogen RG, Zhang M (2011) Cancer cell invasion: treatment and monitoring opportunities in nanomedicine. Adv Drug Deliv Rev 63:582–596

    CAS  Google Scholar 

  136. Wang C, Knudsen B, Zhang X (2011a) Semiconductor quantum dots for electrochemical biosensors. In: Li S, Singh J, Li H, Banerjee IA (eds) Biosensor nanomaterials. Wiley, Hoboken, NJ, USA, pp 199–219

    Google Scholar 

  137. Wang Y, Li Z, Wang J et al (2011b) Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol 29:205–212

    Google Scholar 

Download references

Acknowledgements

We acknowledge funding from the fellowship program grant given by CONACYT (Mexico) to Eden Morales-Narváez. MCINN (Madrid) through project MAT2011-25870 and E.U. through FP7 “NADINE” project (contract number 246513) have sponsored this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arben Merkoçi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Morales-Narváez, E., Merkoçi, A. (2014). Medical Nanobiosensors. In: Ge, Y., Li, S., Wang, S., Moore, R. (eds) Nanomedicine. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2140-5_7

Download citation

Publish with us

Policies and ethics