Nanomedicine pp 117-143 | Cite as

Medical Nanobiosensors

  • Eden Morales-Narváez
  • Arben Merkoçi
Part of the Nanostructure Science and Technology book series (NST)


Diagnostic technology is a vital field for the progress of healthcare and medicine. The most conventional techniques of diagnostic technologies (such as ELISA and PCR) report different handicaps including high cost and time consuming labors. In this regard, novel advances in diagnostic technology are highly desired. Biosensors are useful devices that enable the detection of molecules with diagnostic interest. Since nanotechnology enables the manipulation and control at the nanoscale, biosensors based on nanotechnology or nanobiosensors offer powerful capabilities to diagnostic technology. Here we describe the basic principles of the nanobiosensors and discuss different nanobiosensing strategies towards medical applications focused on three categories: neurodegenerative diseases, cardiovascular diseases and cancer.


Nanobiosensor Biomarker Nanomaterials Neurodegenerative diseases Cardiovascular diseases Cancer 





Alzheimer’s disease


Gold nanoparticles


Cancer antigen 125


Cancer antigen 15-3


Carcionoembryonic antigen


Creutzfeldt-Jakob disease


Carbon nanotubes


Cardiac troponin-T


Epidermal growth factor receptor


Enzyme linked immunosorbent assay


Fluorescence resonance energy transfer


Human epidermal growth factor receptor 2


Horseradish peroxidase


International Union of Pure and Applied Chemistry


Matrix metalloproteinase 9


Magnetic nanoparticles


Multi-walled carbon nanotubes


Oxidized low density lipoprotein


Polymerase chain reaction


Parkinson’s disease


Prion proteins


Prostate specific antigen


Quantum dots


Single-walled carbon nanotubes



We acknowledge funding from the fellowship program grant given by CONACYT (Mexico) to Eden Morales-Narváez. MCINN (Madrid) through project MAT2011-25870 and E.U. through FP7 “NADINE” project (contract number 246513) have sponsored this work.


  1. 1.
    O’Farrel B (2009) Evolution in lateral flow–based immunoassay systems. In: Wong RC, Tse HY (eds) Lateral flow immunoassay. Humana Press, New York, pp 1–33Google Scholar
  2. 2.
    Turner APF (2013) Biosensors: then and now. Trends Biotechnol 31:119–120Google Scholar
  3. 3.
    Mascini M, Palchetti I (2014) Biosensors, electrochemical. Encycl Appl Electrochem 136–140Google Scholar
  4. 4.
    Schallmey M, Frunzke J, Eggeling L et al (2014) Looking for the pick of the bunch: high-throughput screening of producing microorganisms with biosensors. Curr Opin Biotechnol 26:148–154Google Scholar
  5. 5.
    Gdowski A, Ranjan A, Mukerjee A et al (2014) Nanobiosensors: role in cancer detection and diagnosis. Infect Dis Nanomed I 807:33–58, Springer IndiaGoogle Scholar
  6. 6.
    Sagadevan S, Periasamy M (2014) Recent trends in nanobiosensors and their applications-a review. Rev Adv Mater Sci 36:62–69Google Scholar
  7. 7.
    Song S, Wang L, Li J et al (2008) Aptamer-based biosensors. TrAC Trend Anal Chem 27:108–117Google Scholar
  8. 8.
    Mairal T, Ozalp VC, Lozano Sánchez P et al (2008) Aptamers: molecular tools for analytical applications. Anal Bioanal Chem 390:989–1007Google Scholar
  9. 9.
    Ruigrok VJB, Levisson M, Eppink MHM et al (2011) Alternative affinity tools: more attractive than antibodies? Biochem J 436:1–13Google Scholar
  10. 10.
    Li H, Liu S, Dai Z, Bao J, Yang X (2009) Applications of nanomaterials in electrochemical enzyme biosensors. Sensors 9:8547–8561Google Scholar
  11. 11.
    Leca-Bouvier BD, Blum LJ (2010) Enzyme for biosensing applications. In: Zourob M (ed) Recognition receptors in biosensors. Springer, New York, pp 177–220Google Scholar
  12. 12.
    Suman AK (2008) Recent advances in DNA biosensor. Sens Transducers J 92:122–133Google Scholar
  13. 13.
    Kubik T, Bogunia-Kubik K, Sugisaka M (2005) Nanotechnology on duty in medical applications. Curr Pharm Biotechnol 6:17–33Google Scholar
  14. 14.
    Gruner G (2006) Carbon nanotube transistors for biosensing applications. Anal Bioanal Chem 384:322–335Google Scholar
  15. 15.
    Lee J-H, Oh B-K, Choi B (2010) Electrical detection-based analytic biodevice technology. BioChip J 4:1–8Google Scholar
  16. 16.
    Vo-Dinh T, Cullum B (2000) Biosensors and biochips: advances in biological and medical diagnostics. Fresenius J Anal Chem 366:540–551Google Scholar
  17. 17.
    Fritz J (2008) Cantilever biosensors. Analyst 133:855–863Google Scholar
  18. 18.
    Ramanathan K, Danielsson B (2011) Principles and applications of thermal biosensors. Biosens Bioelectron 16:417–423Google Scholar
  19. 19.
    Hu X, Dong S (2008) Metal nanomaterials and carbon nanotubes – synthesis, functionalization and potential applications towards electrochemistry. J Mater Chem 18:1279–1295Google Scholar
  20. 20.
    Martin AL, Li B, Gillies ER (2009) Surface functionalization of nanomaterials with dendritic groups: toward enhanced binding to biological targets. J Am Chem Soc 131:734–741Google Scholar
  21. 21.
    Prencipe G, Tabakman SM, Welsher K (2009) PEG branched polymer for functionalization of nanomaterials with ultralong blood circulation. J Am Chem Soc 131:4783–4787Google Scholar
  22. 22.
    Liu Z, Kiessling F, Gaetjens J (2010) Advanced nanomaterials in multimodal imaging: design, functionalization, and biomedical applications. J Nanomater 894303Google Scholar
  23. 23.
    Mehdi A, Reye C, Corriu R (2011) From molecular chemistry to hybrid nanomaterials. Design and functionalization. Chem Soc Rev 40:563–574Google Scholar
  24. 24.
    Alivisatos AP, Gu W, Larabell C (2005) Quantum dots as cellular probes. Annu Rev Biomed Eng 7:55–76Google Scholar
  25. 25.
    Jiang W, Singhal A, Fischer H (2006) Engineering biocompatible quantum dots for ultrasensitive, real-time biological imaging and detection. In: Ferrari M, Desai T, Bhatia S (eds) BioMEMS and biomedical nanotechnology. Springer, New York City, pp 137–156Google Scholar
  26. 26.
    Bruchez M, Morronne M, Gin P et al (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016Google Scholar
  27. 27.
    Chan W, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018Google Scholar
  28. 28.
    Algar WR, Tavares AJ, Krull UJ (2010) Beyond labels: a review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction. Anal Chim Acta 673:1–25Google Scholar
  29. 29.
    Rosenthal SJ, Chang JC, Kovtun O et al (2011) Biocompatible quantum dots for biological applications. Chem Biol 18:10–24Google Scholar
  30. 30.
    Liu S, Leech D, Ju H (2003) Application of colloidal gold in protein immobilization. Anal Lett 36:1–19Google Scholar
  31. 31.
    Katz E, Willner I, Wang J (2004) Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanalysis 16:19–44Google Scholar
  32. 32.
    Yáñez-Sedeño P, Pingarrón JM (2005) Gold nanoparticle-based electrochemical biosensors. Anal Bioanal Chem 382:884–886Google Scholar
  33. 33.
    Pankhurst Q (2006) Nanomagnetic medical sensors and treatment methodologies. BT Technol J 24:33–38Google Scholar
  34. 34.
    Roca AG, Costo R, Rebolledo AF et al (2009) Progress in the preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 42:224002Google Scholar
  35. 35.
    Sandhu A, Handa H, Abe M (2010) Synthesis and applications of magnetic nanoparticles for biorecognition and point of care medical diagnostics. Nanotechnology 21:442001Google Scholar
  36. 36.
    Wang J (2005) Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17:7–14Google Scholar
  37. 37.
    Balasubramanian K, Burghard M (2006) Biosensors based on carbon nanotubes. Anal Bioanal Chem 385:452–468Google Scholar
  38. 38.
    Davis JJ, Coleman KS, Azamian BR (2003) Chemical and biochemical sensing with modified single walled carbon nanotubes. Chemistry 9:3732–3739Google Scholar
  39. 39.
    Zhao Q, Gan Z, Zhuang Q (2002) Electrochemical sensors based on carbon nanotubes. Electroanalysis 14:1609–1613Google Scholar
  40. 40.
    Compton RG, Wildgoose GG, Wong ELS (2009) In carbon nanotube–based sensors and biosensors. In: Merkoçi AE (ed) Biosensing using nanomaterials. Wiley, Hoboken, NJ, USA, pp 1–38Google Scholar
  41. 41.
    Huo Z, Tsung C-kuang, Huang W et al (2008) Sub-two nanometer single crystal Au. Nano Lett 8:2041–2044Google Scholar
  42. 42.
    Wang J, Liu C, Lin Y (2007) Nanotubes, nanowires, and nanocantilevers in biosensor development. In: Kumar CSSR (ed) Nanomaterials for biosensors. WILEY, Hoboken, NJ, USA, pp 56–100Google Scholar
  43. 43.
    Cui Y, Wei Q, Park H, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293:1289–1292Google Scholar
  44. 44.
    Patolsky F, Zheng G, Lieber CM et al (2006) Nanowire sensors for medicine and the life sciences. Nanomedicine 1:51–65Google Scholar
  45. 45.
    Hangarter CM, Bangar M, Mulchandani A, Myung NV (2010) Conducting polymer nanowires for chemiresistive and FET-based bio/chemical sensors. J Mater Chem 20:3131–3140Google Scholar
  46. 46.
    Wang J, Manesh KM (2010) Motion control at the nanoscale. Small 6:338–345Google Scholar
  47. 47.
    Wang C, Hossain M, Ma L et al (2010) Highly sensitive thermal detection of thrombin using aptamer-functionalized phase change, nanoparticles. Biosens Bioelectron 26:437–443Google Scholar
  48. 48.
    Shao Y, Wang J, Wu H (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22:1027–1036Google Scholar
  49. 49.
    Pumera M (2011) Graphene in biosensing. Mater Today 14:308–315Google Scholar
  50. 50.
    Chambers G, Lawrie L, Cash P, Murray G (2000) Proteomics: a new approach to the study of disease. J Pathology 192:280–288Google Scholar
  51. 51.
    Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 430:631–639Google Scholar
  52. 52.
    Bild AH, Yao G, Chang JT et al (2006) Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439:353–357Google Scholar
  53. 53.
    Alizadeh AA, Eisen MB, Davis RE et al (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403:503–511Google Scholar
  54. 54.
    Takeda M, Martínez R, Kudo T (2010) Apolipoprotein E and central nervous system disorders: reviews of clinical findings. Psychiatry Clin Neurosci 64:592–607Google Scholar
  55. 55.
    Ray S, Britschgi M, Herbert C (2007) Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nat Med 13:1359–1362Google Scholar
  56. 56.
    Palop JJ, Mucke L (2010) Amyloid-[beta]-induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nat Neurosci 13:812–818Google Scholar
  57. 57.
    Khan S, Klein W, Mirkin C et al (2005) Fluorescent and scanometric ultrasensitive detection technologies with the bio-bar code assay for Alzheimer’s disease diagnosis. Nanoscape 2:7–15Google Scholar
  58. 58.
    Nam J-M, Park S-J, Mirkin CA (2002) Bio-barcodes based on oligonucleotide-modified nanoparticles. J Am Chem Soc 124:3820–3821Google Scholar
  59. 59.
    Haes AJ, Chang L, Klein WL, Duyne RP (2005) Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. J Am Chem Soc 127:2264–2271Google Scholar
  60. 60.
    Lee J, Kang D, Lee T (2009) Signal enhancement of surface plasmon resonance based immunosensor using gold nanoparticle-antibody complex for beta-amyloid (1–40) detection. J Nanosci Nanotechnol 9:7155–7160Google Scholar
  61. 61.
    Piliarik M, Vaisocherová H, Homola J (2009) Surface plasmon resonance biosensing. In: Rasooly A, Herold KE (eds) Biosensors and biodetection. Humana Press, New York, pp 65–88Google Scholar
  62. 62.
    Han S-H, Chang YJ, Jung ES et al (2011) Effective screen for amyloid β aggregation inhibitor using amyloid β-conjugated gold nanoparticles. Int J Nanomedicine 6:1–12Google Scholar
  63. 63.
    Morales-Narv.ez E, Mont.n H, Fomicheva A, Merko.i A (2012) Signal enhancement in antibody microarrays using quantum dots nanocrystals: application to potential Alzheimer’s disease biomarker screening. Anal Chem 84:6821–6827Google Scholar
  64. 64.
    Michell AW, Lewis SJG, Foltynie T, Barker R (2004) Biomarkers and Parkinson’s disease. Brain 127:1693–1705Google Scholar
  65. 65.
    Volkow ND, Fowler JS, Wang GJ, Swanson JM (2004) Dopamine in drug abuse and addiction: results from imaging studies and treatment implications. Mol Psychiatry 9:557–569Google Scholar
  66. 66.
    Naranjo CA, Tremblay LK, Busto UE (2011) The role of the brain reward system in depression. Prog Neuropsychopharmacol Biol Psychiatry 25:781–823Google Scholar
  67. 67.
    Lang AE, Lozano AM (1998) Parkinson’s disease. N Engl J Med 339:1044Google Scholar
  68. 68.
    Kapur S, Mamo D (2003) Half a century of antipsychotics and still a central role for dopamine D2 receptors. Prog Neuropsychopharmacol Biol Psychiatry 27:1081–1090Google Scholar
  69. 69.
    Ali SR, Ma Y, Parajuli RR et al (2007) A nonoxidative sensor based on a self-doped polyaniline/carbon nanotube composite for sensitive and selective detection of the neurotransmitter dopamine. Anal Chem 79:2583–2587Google Scholar
  70. 70.
    Alwarappan S, Liu GD, Li CZ (2010) Simultaneous detection of dopamine, ascorbic acid, and uric acid at electrochemically pretreated carbon nanotube biosensors. Nanomedicine 6:52–57Google Scholar
  71. 71.
    Alarcón-Angeles G, Pérez-López B, Palomar-Pardave M et al (2008) Enhanced host–guest electrochemical recognition of dopamine using cyclodextrin in the presence of carbon nanotubes. Carbon 46:898–906Google Scholar
  72. 72.
    Wang Y, Li Y, Tang L (2009) Application of graphene-modified electrode for selective detection of dopamine. Electrochem Commun 11:889–892Google Scholar
  73. 73.
    Zheng Y, Wang Y, Yang X (2011) Aptamer-based colorimetric biosensing of dopamine using unmodified gold nanoparticles. Sens Actuators B 156:95–99Google Scholar
  74. 74.
    Maltête D, Guyant-Maréchal L, Mihout B, Hannequin D (2006) Movement disorders and Creutzfeldt-Jakob disease: a review. Parkinsonism Relat Disord 12:65–71Google Scholar
  75. 75.
    Triantaphyllidou IE, Sklaviadis T, Vynios DH (2006) Detection, quantification, and glycotyping of prion protein in specifically activated enzyme-linked immunosorbent assay plates. Anal Biochem 359:176–182Google Scholar
  76. 76.
    Kouassi GK, Wan P, Sreevatan S, Irudayaraj J (2007) Aptamer-mediated magnetic and gold-coated magnetic nanoparticles as detection assay for prion protein assessment. Biotechnol Prog 23:1239–1244Google Scholar
  77. 77.
    Varshney M, Waggoner PS, Montagna RA, Craighead HG (2009) Prion protein detection in serum using micromechanical resonator arrays. Talanta 80:593–599Google Scholar
  78. 78.
    Hu PP, Chen LQ, Liu C et al (2010) Ultra-sensitive detection of prion protein with a long range resonance energy transfer strategy. Chem Commun 46:8285–8287Google Scholar
  79. 79.
    Zhang L-Y, Zheng H-Z, Long Y-J et al (2011) CdTe quantum dots as a highly selective probe for prion protein detection: colorimetric qualitative, semi-quantitative and quantitative detection. Talanta 83:1716–1720Google Scholar
  80. 80.
    Allender S, Scarborough P, Peto V, Rayner M, Leal J, Luengo-Fernandez R et al (2008) European cardiovascular disease statistics, 2008 edition, 3rd edn. European Heart Network, BrusselsGoogle Scholar
  81. 81.
    Chang K, Chiu J (2005) Clinical applications of nanotechnology in atherosclerotic diseases. Curr Nanosci 1:107–115Google Scholar
  82. 82.
    Nature Biotechnology (2000) Prognostic/diagnostic testing and a raft of new drug targets from genomics promise to transform cardiovascular medicine. Nat Biotechnol 18:IT15–IT17Google Scholar
  83. 83.
    Blankenberg S, Rupprecht HJ, Poirier O et al (2003) Plasma concentrations and genetic variation of matrixmetalloproteinase 9 and prognosis of patients with cardiovascular disease. Circulation 107:1579–1585Google Scholar
  84. 84.
    Martín-ventura JL, Blanco-colio LM, Tuñón J et al (2009) Biomarkers in cardiovascular medicine. Revista Española de Cardiología 62:677–688Google Scholar
  85. 85.
    Schellenberger E, Rudloff F, Warmuth C (2008) Protease-specific nanosensors for magnetic resonance imaging. Bioconjug Chem 19:2440–2445Google Scholar
  86. 86.
    McCarthy JR (2011) Nanomedicine and cardiovascular disease. Curr Cardiovasc Imaging Rep 3:42–49Google Scholar
  87. 87.
    Holland CA, Henry AT, Whinna HC, Church FC (2010) Effect of oligodeoxynucleotide thrombin aptamer on thrombin inhibition by heparin cofactor II and antithrombin. FEBS Lett 484:87–91Google Scholar
  88. 88.
    Tracy RP (2003) Thrombin inflammation, and cardiovascular disease: an epidemiologic perspective cardiovascular disease. Chest 124:49s–57sGoogle Scholar
  89. 89.
    Pavlov V, Xiao Y, Shlyahovsky B et al (2004) Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin. J Am Chem Soc 126:11768–11769Google Scholar
  90. 90.
    Chang H, Tang L, Wang Y et al (2010) Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Anal Chem 82:2341–2346Google Scholar
  91. 91.
    Schäferling M, Nagl S (2011) Förster resonance energy transfer for quantification of protein–protein interactions on microarrays. In: Wu CJ (ed) Protein microarray for disease analysis: methods and protocols. Springer, London, pp 303–320Google Scholar
  92. 92.
    Chen C-K, Huang C-C, Chang H-T (2010) Label-free colorimetric detection of picomolar thrombin in blood plasma using a gold nanoparticle-based assay. Biosens Bioelectron 25:1922–1927Google Scholar
  93. 93.
    Apple FS (1999) Tissue specificity of cardiac troponin I, cardiac troponin T and creatine kinase-MB. Clin Chim Acta 284:151–159Google Scholar
  94. 94.
    Chua JH, Chee R-E, Agarwal A et al (2009) Label-free electrical detection of cardiac biomarker with complementary metal-oxide semiconductor-compatible silicon nanowire sensor arrays. Anal Chem 81:6266–6271Google Scholar
  95. 95.
    Mayilo S, Kloster MA, Wunderlich M et al (2009) Long-range fluorescence quenching by gold nanoparticles in a sandwich immunoassay for cardiac troponin T. Nano Lett 9:4558–4563Google Scholar
  96. 96.
    Austin M (1994) Small, dense low-density lipoprotein as a risk factor for coronary heart disease. Int J Clin Lab Res 24:187–192Google Scholar
  97. 97.
    Rouhanizadeh M, Tang T, Li C (2006) Differentiation of oxidized low density lipoproteins by nanosensors. Sens Actuators B 114:788–798Google Scholar
  98. 98.
    McDonnell B, Hearty S, Leonard P, O’Kennedy R (2009) Cardiac biomarkers and the case for point-of-care testing. Clin Biochem 42:549–561Google Scholar
  99. 99.
    Suprun E, Bulko T, Lisitsa A (2010) Electrochemical nanobiosensor for express diagnosis of acute myocardial infarction in undiluted plasma. Biosens Bioelectron 25:1694–1698Google Scholar
  100. 100.
    Jemal A, Bray F, Ferlay J (2011) Global cancer statistics. CA Cancer J Clin 61:69–90Google Scholar
  101. 101.
    Sawyers CL (2008) The cancer biomarker problem. Nature 452:548–552Google Scholar
  102. 102.
    Novak K (2006) Biomarkers: taking out the trash. Nat Rev Cancer 6:92Google Scholar
  103. 103.
    Perfézou M, Turner A, Merkoçi A (2011) Cancer detection using nanoparticle-based sensors. Chem Soc Rev 7:2606–2622Google Scholar
  104. 104.
    Bohunicky B, Mousa S (2011) Biosensors: the new wave in cancer diagnosis. Nanotechnol Sci Appl 4:1–10Google Scholar
  105. 105.
    Fang Z, Kelley SO (2009) Direct electrocatalytic mRNA detection using PNA-nanowire sensors, Analytical chemistry 81:612–617Google Scholar
  106. 106.
    Waggoner PS, Varshney M, Craighead HG (2009) Detection of prostate specific antigen with nanomechanical resonators. Lab Chip 9:3095–3099Google Scholar
  107. 107.
    Storhoff J, Lubben T, Lefebvre P et al (2008) Detection of prostate cancer recurrence using an ultrasensitive nanoparticle-based PSA assay In: Journal of Clinical Oncology. 45th annual meeting of the American-Society-of-Clinical-Oncology, Orlando, p e16146Google Scholar
  108. 108.
    Oliver C (1994) Use of immunogold with silver enhancement. In: Javois LC (ed) Immunocytochemical methods and protocols, vol 34. Springer, New York, pp 211–216Google Scholar
  109. 109.
    de la Escosura-Muñiz A, Merkoçi A (2011) A nanochannel/nanoparticle-based filtering and sensing platform for direct detection of a cancer biomarker in blood. Small 7:675–682Google Scholar
  110. 110.
    Zhong Z, Wu W, Wang D (2010) Nanogold-enwrapped graphene nanocomposites as trace labels for sensitivity enhancement of electrochemical immunosensors in clinical immunoassays: carcinoembryonic antigen as a model. Biosens Bioelectron 25:2379–2383Google Scholar
  111. 111.
    Myung S, Solanki A, Kim C et al (2011) Graphene-encapsulated nanoparticle-based biosensor for the selective detection of cancer biomarkers. Adv Mater (Deerfield Beach, Fla) 23:2221–2225Google Scholar
  112. 112.
    Qian J, Dai H, Pan X, Liu S (2011) Simultaneous detection of dual proteins using quantum dots coated silica nanoparticles as labels. Biosens Bioelectron 28:314–319Google Scholar
  113. 113.
    Jokerst JV, Raamanathan A, Christodoulides N et al (2009) Nano-bio-chips for high performance multiplexed protein detection: determinations of cancer biomarkers in serum and saliva using quantum dot bioconjugate labels. Biosens Bioelectron 24:3622–3629Google Scholar
  114. 114.
    Ng AHC, Uddayasankar U, Wheeler AR (2010) Immunoassays in microfluidic systems. Anal Bioanal Chem 397:991–1007Google Scholar
  115. 115.
    Jain KK (2010) Advances in the field of nanooncology. BMC Med 8:83Google Scholar
  116. 116.
    de la Escosura-Muñiz A, Sánchez-Espinel C, Díaz-Freitas B et al (2009) Rapid identification and quantification of tumor cells using an electrocatalytic method based on gold nanoparticles. Anal Chem 81:10268–10274Google Scholar
  117. 117.
    Deng T, Li J, Zhang L-L et al (2010) A sensitive fluorescence anisotropy method for the direct detection of cancer cells in whole blood based on aptamer-conjugated near-infrared fluorescent nanoparticles. Biosens Bioelectron 25:1587–1591Google Scholar
  118. 118.
    Maltez-da Costa M, de la Escosura-Muñiz A, Nogués C et al (2012) Simple monitoring of cancer cells using nanoparticles. Nano Lett 12:4164–4171Google Scholar
  119. 119.
    Oghabian M, Jeddi-Tehrani M, Zolfaghari A (2011) Detectability of Her2 positive tumors using monoclonal antibody conjugated iron oxide. J Nanosci Nanotechnol 11:5340–5344Google Scholar
  120. 120.
    Rasaneh S, Rajabi H, Babaei M (2011) MRI contrast agent for molecular imaging of the HER2/neu receptor using targeted magnetic nanoparticles. J Nanopart Res 13:2285–2293Google Scholar
  121. 121.
    Perry M, Li Q, Kennedy RT (2009) Review of recent advances in analytical techniques for the determination of neurotransmitters. Anal Chim Acta 653:1–22Google Scholar
  122. 122.
    Morales-Narváez E, Montón H, Fomicheva A, Merkoçi A (2012) Signal enhancement in antibody microarrays using quantum dots nanocrystals: application to potential Alzheimer’s disease biomarker screening. Anal Chem 84:6821–6827Google Scholar
  123. 123.
    Ambrosi A, Airò F, Merkoçi A (2009) Enhanced gold nanoparticle based ELISA for breast cancer biomarker. Anal Chem 82:1151–1156Google Scholar
  124. 124.
    Ambrosi A, De La Escosura-Muñiz A, Castañeda MT, Merkoçi A (2009) Gold nanoparticles: a versatile label for affinity. In: Merkoçi A (ed) Biosensing using nanomaterials. Wiley, Hoboken, NJ, USA, pp 177–197Google Scholar
  125. 125.
    Brambilla D, Le Droumaguet B, Nicolas J et al (2011) Nanotechnologies for Alzheimer’s disease: diagnosis, therapy, and safety issues. Nanomedicine 7(5):521–540Google Scholar
  126. 126.
    Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45Google Scholar
  127. 127.
    Donzella V, Crea F (2011) Optical biosensors to analyze novel biomarkers in oncology. J Biophotonics 4:442–452Google Scholar
  128. 128.
    Ehara S, Ueda M, Naruko T et al (2001) Elevated levels of oxidized low density lipoprotein show a positive relationship with the severity of acute coronary syndromes. Circulation 103:1955–1960Google Scholar
  129. 129.
    Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5:161–171Google Scholar
  130. 130.
    Godin B, Sakamoto J, Serda R (2010) Emerging applications of nanomedicine for therapy and diagnosis of cardiovascular diseases. Trends Pharmacol Sci 31:199–205Google Scholar
  131. 131.
    Jayagopal A, Linton MRF, Fazio S, Haselton FR (2010) Insights into atherosclerosis using nanotechnology. Curr Atheroscler Rep 12:209–215Google Scholar
  132. 132.
    Kong LX, Peng Z, Sugumar D (2006) Management of cardiovascular diseases with micro systems and nanotechnology. J Nanosci Nanotechnol 6:2754–2761Google Scholar
  133. 133.
    Morales-Narváez E, Merkoçi A (2012) Graphene oxide as an optical biosensing platform. Adv Mater 24:3298–3308Google Scholar
  134. 134.
    Soper SA, Brown K, Ellington A et al (2006) Point-of-care biosensor systems for cancer diagnostics/prognostics. Biosens Bioelectron 21:1932–1942Google Scholar
  135. 135.
    Veiseh O, Kievit FM, Ellenbogen RG, Zhang M (2011) Cancer cell invasion: treatment and monitoring opportunities in nanomedicine. Adv Drug Deliv Rev 63:582–596Google Scholar
  136. 136.
    Wang C, Knudsen B, Zhang X (2011a) Semiconductor quantum dots for electrochemical biosensors. In: Li S, Singh J, Li H, Banerjee IA (eds) Biosensor nanomaterials. Wiley, Hoboken, NJ, USA, pp 199–219Google Scholar
  137. 137.
    Wang Y, Li Z, Wang J et al (2011b) Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol 29:205–212Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Nanobioelectronics & Biosensors GroupCatalan Institute of Nanoscience and NanotechnologyBarcelonaSpain
  2. 2.ESAII DepartmentPolytechnic University of CataloniaBarcelonaSpain
  3. 3.ICREABarcelonaSpain

Personalised recommendations