Skip to main content

Nanomedicine: Revolutionary Interdiscipline

  • Chapter
  • First Online:
Nanomedicine

Part of the book series: Nanostructure Science and Technology ((NST))

  • 1728 Accesses

Abstract

Nanomedicine is one of the most dynamic, lucrative and productive contemporary research streams; it is playing an intimate role in the progression of modern medicine through the development of new and highly innovative treatments as well as improving and enhancing established techniques. But what is nanomedicine and why the pomp and ceremony? This chapter aims to dissect nanomedicine with the intention of both defining it as a field and demonstrating its worthiness to receive the title of ‘revolutionary interdiscipline’. With this in mind, the field is introduced as combination of three distinct subsections: nanobiotechnology, nanotechnology and nanobiomimetics, and also through the two main synthetic approaches, top-down and bottom-up, both of which are pivotal in separating the enhancement of existing technology from the development of revolutionary new technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feynman RP (1960) There’s plenty of room at the bottom. Eng Sci 23:22–36

    Google Scholar 

  2. Sabatier PA (1986) Top-down and bottom-up approaches to implementation research: a critical analysis and suggested synthesis. J Public Policy 6:21–48

    Article  Google Scholar 

  3. Brzicová T, Feliu N, Fadeel B (2014) Research highlights: highlights from the last year in nanomedicine. Nanomedicine 9(1):17–20

    Article  Google Scholar 

  4. Bogue R (2013) Inspired by nature at the nanoscale. Sens Rev 33:19–24

    Article  Google Scholar 

  5. Bhushan B (2010) Springer handbook of nanotechnology. Springer, Berlin

    Book  Google Scholar 

  6. Whitesides GM (2003) The ‘right’ size in nanobiotechnology. Nat Biotechnol 21:1161–1165

    Article  CAS  Google Scholar 

  7. Noyce RN (1977) Microelectronics. Sci Am 237:63–69

    Article  Google Scholar 

  8. Brock DC (2006) Understanding Moore‘s law: four decades of Innovation. CHF Publications, Philadelphia

    Google Scholar 

  9. Shi Z, Kochergin V, Wang F (2009) 193 nm superlens imaging structure for 20 nm lithography node. Opt Express 17:11309–11314

    Article  CAS  Google Scholar 

  10. Veedu VP, Cao AY, Li XS, Ma KG, Soldano C, Kar S, Ajayan PM, Ghasemi-Nejhad MN (2006) Multifunctional composites using reinforced laminae with carbon-nanotube forests. Nat Mater 5:457–462

    Article  CAS  Google Scholar 

  11. Quaresimin M, Varley RJ (2008) Understanding the effect of nano-modifier addition upon the properties of fibre reinforced laminates. Compos Sci Technol 68:718–726

    Article  CAS  Google Scholar 

  12. Lee SW, Chang W-J, Bashir R, Koo Y-M (2007) “Bottom-up” approach for implementing nano/microstructure using biological and chemical interactions. Biotechnol Bioprocess Eng 12:185–199

    Article  CAS  Google Scholar 

  13. Wang YL, Xia YN (2004) Bottom-up and top-down approaches to the synthesis of monodispersed spherical colloids of low melting-point metals. Nano Lett 4:2047–2050

    Article  CAS  Google Scholar 

  14. Haupt K, Mosbach K (2000) Molecularly imprinted polymers and their use in biomimetic sensors. Chem Rev 100:2495–2504

    Article  CAS  Google Scholar 

  15. Zhang H, Fung KH, Hartmann J, Chan CT, Wang DY (2008) Controlled chainlike agglomeration of charged gold nanoparticles via a deliberate interaction balance. J Phys Chem C 112:16830–16839

    Article  CAS  Google Scholar 

  16. Krein SL, Vijan S, Pogach LM, Hogan MM, Kerr EA (2002) Aspirin use and counseling about aspirin among patients with diabetes. Diabetes Care 25:965–970

    Article  CAS  Google Scholar 

  17. Chan AT, Fuchs CS, Ogino S (2009) Aspirin use and survival after diagnosis of colorectal cancer. Gastroenterology 136:A55

    Article  Google Scholar 

  18. Elmissiry M, Mahdy A, Ghoniem G (2011) Treatment of female stress urinary incontinence: what women find acceptable and the impact of clinical and urodynamic evaluation on their final choice. Scandanavian J Urol Nephrol 45:326–331

    Article  Google Scholar 

  19. Frampton JE, Plosker GL (2007) Duloxetine: a review of its use in the treatment of major depressive disorder. CNS Drugs 21:581–609

    Article  CAS  Google Scholar 

  20. Cheitlin MD, Hutter AM Jr, Brindis RG, Ganz P, Kaul S, Russell RO Jr, Zusman RM (1999) Use of sildenafil (Viagra) in patients with cardiovascular disease. Technology and Practice Executive Committee. Circulation 99:168–177

    Article  CAS  Google Scholar 

  21. Lalej-Bennis D, Sellam R, Selam JL, Slama G (2000) How to prescribing Viagra in practice…. Diabetes Metab 26:416–420

    CAS  Google Scholar 

  22. Dordick JS, Lee KH (2014) Editorial overview: nanobiotechnology. Curr Opin Biotechnol 28:iv–v

    Article  CAS  Google Scholar 

  23. Schwaber J, Cohen EP (1973) Human x mouse somatic cell hybrid clone secreting immunoglobulins of both parental types. Nature 244:444–447

    Article  CAS  Google Scholar 

  24. Bastian LA, Nanda K, Hasselblad V, Simel DL (1998) Diagnostic efficiency of home pregnancy test kits. A meta-analysis. Arch Fam Med 7:465–469

    Article  CAS  Google Scholar 

  25. Kannangai R, Ramalingam S, Prakash KJ, Abraham OC, George R, Castillo RC, Schwartz DH, Jesudason MV, Sridharan G (2001) A peptide enzyme linked immunosorbent assay (ELISA) for the detection of human immunodeficiency virus type-2 (HIV-2) antibodies: an evaluation on polymerase chain reaction (PCR) confirmed samples. J Clin Virol 22:41–46

    Article  CAS  Google Scholar 

  26. Cordes RJ, Ryan ME (1995) Pitfalls in HIV testing. Application and limitations of current tests. Postgrad Med 98:177–180

    CAS  Google Scholar 

  27. Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF (1999) In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285:1569–1572

    Article  CAS  Google Scholar 

  28. Jo D, Liu DY, Yao S, Collins RD, Hawiger J (2005) Intracellular protein therapy with SOCS3 inhibits inflammation and apoptosis. Nat Med 11:892–898

    Article  CAS  Google Scholar 

  29. Yamanaka R (2004) Alphavirus vectors for cancer gene therapy (Review). Int J Oncol 24:919–923

    CAS  Google Scholar 

  30. Cortez-Retamozo V, Backmann N, Senter PD, Wernery U, De Baetselier P, Muyldermans S, Revets H (2004) Efficient cancer therapy with a nanobody-based conjugate. Cancer Res 64:2853–2857

    Article  CAS  Google Scholar 

  31. Goel A, Colcher D, Baranowska-Kortylewicz J, Augustine S, Booth BJM, Pavlinkova G, Batra SK (2000) Genetically engineered tetravalent single-chain Fv of the pancarcinoma monoclonal antibody CC49: improved biodistribution and potential for therapeutic application. Cancer Res 60:6964–6971

    CAS  Google Scholar 

  32. Kreuter J, Shamenkov D, Petrov V, Ramge P, Cychutek K, Koch-Brandt C, Alyautdin R (2002) Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J Drug Target 10:317–325

    Article  CAS  Google Scholar 

  33. Modi G, Pillay V, Choonara YE, Ndesendo VMK, Du Toit LC, Naidoo D (2009) Nanotechnological applications for the treatment of neurodegenerative disorders. Prog Neurobiol 88:272–285

    Article  CAS  Google Scholar 

  34. Liu G, Swierczewska M, Lee S, Chen X (2010) Functional nanoparticles for molecular imaging guided gene delivery. Nano Today 5:524–539

    Article  CAS  Google Scholar 

  35. Chen Y, Xue Z, Zheng D, Xia K, Zhao Y, Liu T, Long Z, Xia J (2003) Sodium chloride modified silica nanoparticles as a non-viral vector with a high efficiency of DNA transfer into cells. Curr Gene Ther 3:273–279

    Article  CAS  Google Scholar 

  36. Krpetić Z, Anguissola S, Garry D, Kelly PM, Dawson KA (2014) Nanomaterials: impact on cells and cell organelles. In: Nanomaterial. Springer, Netherlands, pp 135–156

    Chapter  Google Scholar 

  37. Dobson J (2006) Magnetic nanoparticles for drug delivery. Drug Dev Res 67:55–60

    Article  CAS  Google Scholar 

  38. Mcbain SC, Yiu HHP, Dobson J (2008) Magnetic nanoparticles for gene and drug delivery. Int J Nanomedicine 3:169–180

    CAS  Google Scholar 

  39. Kim DH, Kim KN, Kim KM, Lee YK (2009) Targeting to carcinoma cells with chitosan- and starch-coated magnetic nanoparticles for magnetic hyperthermia. J Biomed Mater Res A 88A:1–11

    Article  CAS  Google Scholar 

  40. Tani J, Faustineand Sufian JT (2011) Updates on current advances in gene therapy. West Indian Med J 60:188–194

    Google Scholar 

  41. Kito A, Yoshida J, Kageyama N (1987) Basic studies on chemotherapy of brain tumors by means of liposomes: affinity of sulfatide-inserted liposomes to human glioma cells. Brain Nerve 39:783–788

    CAS  Google Scholar 

  42. Kikuchi H (2004) Application of stealth liposomes to cancer chemotherapy and gene therapy. Biotherapy 18:353–360

    CAS  Google Scholar 

  43. Fortier C, Durocher Y, De Crescenzo G (2014) Surface modification of nonviral nanocarriers for enhanced gene delivery. Nanomedicine 9(1):135–151

    Article  CAS  Google Scholar 

  44. Pradhan P, Giri J, Rieken F, Koch C, Mykhaylyk O, Doblinger M, Banerjee R, Bahadur D, Plank C (2010) Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy. J Control Release 142:108–121

    Article  CAS  Google Scholar 

  45. Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem-Int Ed 49:3280–3294

    Article  CAS  Google Scholar 

  46. Salata O (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2:3

    Article  Google Scholar 

  47. Liu Z, Tabakman S, Welsher K, Dai H (2009) Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res 2:85–120

    Article  CAS  Google Scholar 

  48. Xiong MP, Bae Y, Fukushima S, Forrest ML, Nishiyama N, Kataoka K, Kwon GS (2007) pH-responsive multi-PEGylated dual cationic nanoparticles enable charge modulations for safe gene delivery. ChemMedChem 2:1321–1327

    Article  CAS  Google Scholar 

  49. Wu GY, Wu CH (1987) Receptor-mediated in vitro gene transformation by a soluble DNA carrier system. J Biol Chem 262:4429–4432

    CAS  Google Scholar 

  50. Hirst AR, Escuder B, Miravet JF, Smith DK (2008) High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: from regenerative medicine to electronic devices. Angew Chem-Int Ed 47:8002–8018

    Article  CAS  Google Scholar 

  51. Chhabra R, Sharma J, Liu Y, Rinker S, Yan H (2010) DNA self-assembly for nanomedicine. Adv Drug Deliv Rev 62:617–625

    Article  CAS  Google Scholar 

  52. Yan H, Yin P, Park SH, Li HY, Feng LP, Guan XJ, Liu DG, Reif JH, Labean TH (2004) Self-assembled DNA structures for nanoconstruction, DNA-based molecular electronics: international symposium on DNA-based molecular electronics, 725:43–52

    Google Scholar 

  53. Hosseinkhani H, Hosseinkhani M, Kobayashi H (2006) Design of tissue-engineered nanoscaffold through self-assembly of peptide amphiphile. J Bioact Compat Polym 21:277–296

    Article  CAS  Google Scholar 

  54. Kumar CSSR (2010) Biomometic and bioinspired nanomaterials. Wiley, Weinheim

    Google Scholar 

  55. Li S, Ge Y, Piletsky SA, Lunec J (2012) Molecularly imprinted sensors: overview and applications. Elsevier, Boston

    Google Scholar 

  56. Haupt K (2003) Peer reviewed: molecularly imprinted polymers: the next generation. Anal Chem 75:376 A–383 A

    Article  CAS  Google Scholar 

  57. Bossi A, Bonini F, Turner APF, Piletsky SA (2007) Molecularly imprinted polymers for the recognition of proteins: the state of the art. Biosens Bioelectron 22:1131–1137

    Article  CAS  Google Scholar 

  58. Bui BTS, Haupt K (2010) Molecularly imprinted polymers: synthetic receptors in bioanalysis. Anal Bioanal Chem 398:2481–2492

    Article  CAS  Google Scholar 

  59. Ruigrok VJ, Levisson M, Eppink MH, Smidt H, Van Der Oost J (2011) Alternative affinity tools: more attractive than antibodies? Biochem J 436:1–13

    Article  CAS  Google Scholar 

  60. Lulinski P (2011) Molecularly imprinted polymers in pharmaceutical sciences. Part II. Applications in pharmaceutical analysis. Polimery 56:3–10

    CAS  Google Scholar 

  61. Lulinski P (2010) Molecularly imprinted polymers in pharmaceutical sciences. Part I. The principles of molecular imprinting. Applications in drug synthesis and drug delivery systems. Polimery 55:799–805

    CAS  Google Scholar 

  62. O’sullivan CK (2002) Aptasensors–the future of biosensing? Anal Bioanal Chem 372:44–48

    Article  Google Scholar 

  63. Lim YC, Kouzani AZ, Duan W (2010) Aptasensors: a review. J Biomed Nanotechnol 6:93–105

    Article  CAS  Google Scholar 

  64. Giovannoli C, Baggiani C, Anfossi L, Giraudi G (2008) Aptamers and molecularly imprinted polymers as artificial biomimetic receptors in affinity capillary electrophoresis and electrochromatography. Electrophoresis 29:3349–3365

    Article  CAS  Google Scholar 

  65. Abelow AE, Schepelina O, White RJ, Vallee-Belisle A, Plaxco KW, Zharov I (2010) Biomimetic glass nanopores employing aptamer gates responsive to a small molecule. Chem Commun (Camb) 46:7984–7986

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferdia Bates .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bates, F. (2014). Nanomedicine: Revolutionary Interdiscipline. In: Ge, Y., Li, S., Wang, S., Moore, R. (eds) Nanomedicine. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2140-5_1

Download citation

Publish with us

Policies and ethics