Skip to main content

Diamondoid Nanorobotics

  • Chapter
  • First Online:

Abstract

Activity in the field of nanorobotics, as measured by published literature, has been growing at +30 % per year for the last decade. A wide variety of simple nanorobotic mechanisms have already been fabricated, but much of the interest in nanorobotics is focused on the future of medicine. Diamondoid nanorobots potentially offer the most powerful medical applications. Technologies required for the atomically precise fabrication of diamondoid nanorobots in macroscale quantities at low cost require the development of a new nanoscale manufacturing technology called positional diamondoid molecular manufacturing, enabling diamondoid nanofactories that can build nanorobots. Achieving this new technology will require the significant further development of four closely related technical capabilities: (1) diamond mechanosynthesis, (2) programmable positional assembly, (3) massively parallel positional assembly, and (4) nanomechanical design.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Freitas RA Jr (1999) Nanomedicine, Vol. I: Basic Capabilities, Landes Bioscience, Georgetown, TX. http://www.nanomedicine.com/NMI.htm

  2. Ding B, Seeman NC (2006) Operation of a DNA robot arm inserted into a 2D DNA crystalline substrate. Science 314:1583–1585

    Article  Google Scholar 

  3. Garibotti AV, Liao S, Seeman NC (2007) A simple DNA-based translation system. Nano Lett 7:480–483

    Article  Google Scholar 

  4. Goodman RP, Heilemann M, Doose S, Erben CM, Kapanidis AN, Turberfield AJ (2008) Reconfigurable, braced, three-dimensional DNA nanostructures. Nat Nanotechnol 3:93–96

    Article  Google Scholar 

  5. Gu H, Chao J, Xiao SJ, Seeman NC (2010) A proximity-based programmable DNA nanoscale assembly line. Nature 465:202–205

    Article  Google Scholar 

  6. Sahu S, LaBean TH, Reif JH (2008) A DNA nanotransport device powered by polymerase phi29. Nano Lett 8:3870–3878

    Article  Google Scholar 

  7. Hamdi M (2009) Computational design and multiscale modeling of a nanoactuator using DNA actuation. Nanotechnology 20:485501

    Article  Google Scholar 

  8. Sharma G, Rege K, Budil D, Yarmush M, Mavroidis C (2009) Computational studies of a protein based nanoactuator for nanogripping applications. Int J Robot Res 28:421–435, http://www.coe.neu.edu/Research/robots/papers/IJRR_Nanorob.pdf

    Article  Google Scholar 

  9. Kaur H, Kumar S, Kukkar D, Kaur I, Singh K, Bharadwaj LM (2010) Transportation of drug-(polystyrene bead) conjugate by actomyosin motor system. J Biomed Nanotechnol 6:279–286

    Article  Google Scholar 

  10. Hamdi M, Ferreira A, Sharma G, Mavroidis C (2008) Prototyping bio-nanorobots using molecular dynamics simulation and virtual reality. Microelectronics J 30:190–201, http://www.coe.neu.edu/Research/robots/papers/MEJ.pdf

    Article  Google Scholar 

  11. Watari M, Ndieyira JW, McKendry RA (2010) Chemically programmed nanomechanical motion of multiple cantilever arrays. Langmuir 26:4623–4626

    Article  Google Scholar 

  12. Hill C, Amodeo A, Joseph JV, Patel HR (2008) Nano- and microrobotics: how far is the reality? Expert Rev Anticancer Ther 8:1891–1897

    Article  Google Scholar 

  13. Jain KK (2008) Nanomedicine: application of nanobiotechnology in medical practice. Med Princ Pract 17:89–101

    Article  Google Scholar 

  14. Mallouk TE, Sen A (2009) Powering nanorobots. Sci Am 300:72–77

    Article  Google Scholar 

  15. Sánchez S, Pumera M (2009) Nanorobots: the ultimate wireless self-propelled sensing and actuating devices. Chem Asian J 4:1402–1410

    Article  Google Scholar 

  16. Hogg T, Freitas RA Jr (2010) Chemical power for microscopic robots in capillaries. Nanomedicine 6:298–317, http://www.nanomedicine.com/Papers/NanoPowerModel2010.pdf

    Google Scholar 

  17. Freitas RA Jr (2010) Comprehensive nanorobotic control of human morbidity and aging. In: Fahy GM, West MD, Coles LS, Harris SB (eds) The future of aging: pathways to human life extension. Springer, New York, NY, pp 685–805, http://www.nanomedicine.com/Papers/Aging.pdf

    Google Scholar 

  18. Ishiyama K, Sendoh M, Arai KI (2002) Magnetic micromachines for medical applications. J Magn Magn Mater 242–245:1163–1165

    Article  Google Scholar 

  19. Mathieu JB, Martel S, Yahia L et al (2005) MRI systems as a mean of propulsion for a microdevice in blood vessels. Biomed Mater Eng 15:367–374

    Google Scholar 

  20. Martel S, Mathieu JB, Felfoul O et al (2007) Automatic navigation of an untethered device in the artery of a living animal using a conventional clinical magnetic resonance imaging system. Appl Phys Lett 90:114105, http://wiki.polymtl.ca/nano/fr/images/1/14/J-2007-MRSUB-APL-Sylvain2.pdf

    Article  Google Scholar 

  21. Martel S (2010) Microrobotic navigable entities for magnetic resonance targeting. Conf Proc IEEE Eng Med Biol Soc 1:1942–1945

    Google Scholar 

  22. Pouponneau P, Savadogo O, Napporn T, Yahia L, Martel S (2010) Corrosion study of iron-cobalt alloys for MRI-based propulsion embedded in untethered microdevices operating in the vascular network. J Biomed Mater Res B Appl Biomater 93:203–211

    Google Scholar 

  23. Yesin KB, Exner P, Vollmers K et al (2005) Biomedical micro-robotic system. 8th International conference on medical image computing and computer assisted intervention (MICCAI 2005/http://www.miccai2005.org), Palm Springs, CA, 26–29 October 2005, p 819

  24. Ergeneman O, Chatzipirpiridis G, Gelderblom FB, Pokki J, Pane S, Marin Suarez Del Toro M, Fernandez Sanchez JF, Sotiriou GA, Nelson BJ (2010) Oxygen sensing using microrobots. Conf Proc IEEE Eng Med Biol Soc 1:1958–1961

    Google Scholar 

  25. Zhang L, Peyer KE, Nelson BJ (2010) Artificial bacterial flagella for micromanipulation. Lab Chip 10:2203–2215

    Article  Google Scholar 

  26. Nelson BJ, Kaliakatsos IK, Abbott JJ (2010) Microrobots for minimally invasive medicine. Annu Rev Biomed Eng 12:55–85

    Article  Google Scholar 

  27. Vartholomeos P, Mavroidis C (2010) Simulation platform for self-assembly structures in MRI-based nanorobotic drug delivery systems. In: Proceedings of 2010 IEEE international conference on robotics and automation (ICRA2010), Anchorage, Alaska, 3–8 May, pp 5594–5600. http://www.coe.neu.edu/Research/robots/papers/ICRA2010_3.pdf

  28. Behkam B, Sitti M (2007) Bacterial flagella-based propulsion and on/off motion control of microscale objects. Appl Phys Lett 90:1–3, http://nanolab.me.cmu.edu/publications/papers/Behkam-APL2007.pdf

    Article  Google Scholar 

  29. Sitti M (2009) Miniature devices: voyage of the microrobots. Nature 458:1121–1122

    Article  Google Scholar 

  30. Monash University (2006) Micro-robots take off as ARC announces funding. Press release, 11 October 2006. http://www.monash.edu.au/news/newsline/story/1038

  31. Cole E (2007) Fantastic voyage: departure 2009. Wired Mag, 18 Jan 2007. http://www.wired.com/medtech/health/news/2007/01/72448

  32. Friend J, Yan B, Yeo L et al (2008) A microrobot for three-dimensional navigation of neural vasculature for enabling treatment of stroke, arteriovenous formations, and other neural disorders. CASS Foundation Grant SM/07/1616

    Google Scholar 

  33. Sacconi L, Tolic-Norrelykke IM, Antolini R et al (2005) Combined intracellular three-dimensional imaging and selective nanosurgery by a nonlinear microscope. J Biomed Opt 10:14002

    Article  Google Scholar 

  34. Colombelli J, Reynaud EG, Rietdorf J et al (2005) In vivo selective cytoskeleton dynamics quantification in interphase cells induced by pulsed ultraviolet laser nanosurgery. Traffic 6:1093–1102

    Article  Google Scholar 

  35. Colombelli J, Reynaud EG, Stelzer EH (2007) Investigating relaxation processes in cells and developing organisms: from cell ablation to cytoskeleton nanosurgery. Methods Cell Biol 82:267–291

    Article  Google Scholar 

  36. Heisterkamp A, Maxwell IZ, Mazur E et al (2005) Pulse energy dependence of subcellular dissection by femtosecond laser pulses. Opt Express 13:3690–3696

    Article  Google Scholar 

  37. Wakida NM, Lee CS, Botvinick ET et al (2007) Laser nanosurgery of single microtubules reveals location-dependent depolymerization rates. J Biomed Opt 12:024022

    Article  Google Scholar 

  38. Mascaro AL, Sacconi L, Pavone FS (2010) Multi-photon nanosurgery in live brain. Front Neuroenergetics 2:21

    Google Scholar 

  39. Shen N, Datta D, Schaffer CB et al (2005) Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser nanoscissor. Mech Chem Biosyst 2:17–25

    Google Scholar 

  40. Tirlapur UK, Konig K (2002) Femtosecond near-infrared laser pulses as a versatile non-invasive tool for intra-tissue nanoprocessing in plants without compromising viability. Plant J 31:365–374

    Article  Google Scholar 

  41. Konig K, Riemann I, Fischer P et al (1999) Intracellular nanosurgery with near infrared femtosecond laser pulses. Cell Mol Biol 45:195–201

    Google Scholar 

  42. Chen X, Kis A, Zettl A et al (2007) A cell nanoinjector based on carbon nanotubes. Proc Natl Acad Sci USA 104:8218–8222

    Article  Google Scholar 

  43. Freitas RA Jr (2003) Nanomedicine. In: Biocompatibility, vol IIA, Landes Bioscience, Georgetown, TX, 2003. http://www.nanomedicine.com/NMIIA.htm

  44. Freitas RA Jr (2005) Microbivores: artificial mechanical phagocytes using digest and discharge protocol. J Evol Technol 14:1–52, http://jetpress.org/volume14/Microbivores.pdf

    Google Scholar 

  45. Johnson ET, Baron DB, Naranjo B, Bond DR, Schmidt-Dannert C, Gralnick JA (2010) Enhancement of survival and electricity production in an engineered bacterium by light-driven proton pumping. Appl Environ Microbiol 76:4123–4129

    Article  Google Scholar 

  46. Ellis T, Adie T, Baldwin GS (2011) DNA assembly for synthetic biology: from parts to pathways and beyond. Integr Biol (Camb) 3:109–118

    Article  Google Scholar 

  47. Drexler KE (1992) Nanosystems: molecular machinery, manufacturing, and computation. Wiley, New York, NY

    Google Scholar 

  48. Freitas RA Jr, Merkle RC (2004) Kinematic self-replicating machines. Landes Bioscience, Georgetown, TX, http://www.MolecularAssembler.com/KSRM.htm

    Google Scholar 

  49. Nanofactory collaboration website (2011) http://www.MolecularAssembler.com/Nanofactory

  50. Freitas RA Jr (1998) Exploratory design in medical nanotechnology: a mechanical artificial red cell. Artif Cells Blood Substit Immobil Biotechnol 26:411–430, http://www.foresight.org/Nanomedicine/Respirocytes.html

    Article  Google Scholar 

  51. Freitas RA Jr (2000) Nanodentistry. J Am Dent Assoc 131:1559–1566, http://www.rfreitas.com/Nano/Nanodentistry.htm

    Google Scholar 

  52. Freitas RA Jr (2006) Pharmacytes: an ideal vehicle for targeted drug delivery. J Nanosci Nanotechnol 6:2769–2775, http://www.nanomedicine.com/Papers/JNNPharm06.pdf

    Google Scholar 

  53. Freitas RA Jr (2007) The ideal gene delivery vector: chromallocytes, cell repair nanorobots for chromosome replacement therapy. J Evol Technol 16:1–97, http://jetpress.org/v16/freitas.pdf

    Google Scholar 

  54. Freitas RA Jr (2005) Nanotechnology, nanomedicine and nanosurgery. Intl J Surgery 3:1–4, http://www.nanomedicine.com/Papers/IntlJSurgDec05.pdf

    Article  Google Scholar 

  55. Freitas RA Jr (2000) Clottocytes: artificial mechanical platelets. IMM Report No. 18, Foresight Update No. 41, pp 9–11. http://www.imm.org/Reports/Rep018.html

  56. Freitas RA Jr, Phoenix CJ (2002) Vasculoid: a personal nanomedical appliance to replace human blood. J Evol Technol 11:1–139, http://www.jetpress.org/volume11/vasculoid.pdf

    Google Scholar 

  57. Committee to Review the NNI (National Nanotechnology Initiative), National Materials Advisory Board (NMAB), National Research Council (NRC) (2006) A matter of size: triennial review of the national nanotechnology initiative. The National Academies Press, Washington, DC, http://www.nap.edu/catalog/11752.html#toc

    Google Scholar 

  58. Kenny T (2007) Tip-Based Nanofabrication (TBN). Defense Advanced Research Projects Agency (DARPA)/Microsystems Technology Office (MTO), Broad Agency Announcement BAA 07-59. http://www.fbo.gov/spg/ODA/DARPA/CMO/BAA07-59/listing.html

  59. Cohen JD, Sadowski JP, Dervan PB (2007) Addressing single molecules on DNA nanostructures. Angew Chem Int Ed 46:7956–7959

    Article  Google Scholar 

  60. Lee JH, Wernette DP, Yigit MV, Liu J, Wang Z, Lu Y (2007) Site-specific control of distances between gold nanoparticles using phosphorothioate anchors on DNA and a short bifunctional molecular fastener. Angew Chem Int Ed Engl 46:9006–9010

    Article  Google Scholar 

  61. Freitas RA Jr (2005) Current status of nanomedicine and medical nanorobotics. J Comput Theor Nanosci 2:1–25, http://www.nanomedicine.com/Papers/NMRevMar05.pdf

    Google Scholar 

  62. Merkle RC (1997) A proposed ‘metabolism’ for a hydrocarbon assembler. Nanotechnology 8:149–162, http://www.zyvex.com/nanotech/hydroCarbonMetabolism.html

    Article  MathSciNet  Google Scholar 

  63. Merkle RC, Freitas RA Jr (2003) Theoretical analysis of a carbon-carbon dimer placement tool for diamond mechanosynthesis. J Nanosci Nanotechnol 3:319–324, http://www.rfreitas.com/Nano/JNNDimerTool.pdf

    Google Scholar 

  64. Mann DJ, Peng J, Freitas RA Jr, Merkle RC (2004) Theoretical analysis of diamond mechanosynthesis. Part II. C2 mediated growth of diamond C(110) surface via Si/Ge-triadamantane dimer placement tools. J Comput Theor Nanosci 1:71–80, http://www.MolecularAssembler.com/JCTNMannMar04.pdf

    Article  Google Scholar 

  65. Allis DG, Drexler KE (2005) Design and analysis of a molecular tool for carbon transfer in mechanosynthesis. J Comput Theor Nanosci 2:45–55, http://e-drexler.com/d/05/00/DC10C-mechanosynthesis.pdf

    Google Scholar 

  66. Freitas RA Jr (2005) A simple tool for positional diamond mechanosynthesis, and its method of manufacture. US Provisional Patent Application No. 60/543,802, filed 11 Feb 2004; US Patent 7,687,146, 30 Mar 2010. http://www.freepatentsonline.com/7687146.pdf

  67. Peng J, Freitas RA Jr, Merkle RC, von Ehr JR, Randall JN, Skidmore GD (2006) Theoretical analysis of diamond mechanosynthesis. Part III. Positional C2 deposition on diamond C(110) surface using Si/Ge/Sn-based dimer placement tools. J Comput Theor Nanosci 3:28–41, http://www.MolecularAssembler.com/Papers/JCTNPengFeb06.pdf

    Google Scholar 

  68. Temelso B, Sherrill CD, Merkle RC, Freitas RA Jr (2006) High-level ab initio studies of hydrogen abstraction from prototype hydrocarbon systems. J Phys Chem A 110:11160–11173, http://www.MolecularAssembler.com/Papers/TemelsoHAbst.pdf

    Article  Google Scholar 

  69. Freitas RA Jr, Allis DG, Merkle RC (2007) Horizontal Ge-substituted polymantane-based C2 dimer placement tooltip motifs for diamond mechanosynthesis. J Comput Theor Nanosci 4:433–442, http://www.MolecularAssembler.com/Papers/DPTMotifs.pdf

    Google Scholar 

  70. Temelso B, Sherrill CD, Merkle RC, Freitas RA Jr (2007) Ab initio thermochemistry of the hydrogenation of hydrocarbon radicals using silicon, germanium, tin and lead substituted methane and isobutane. J Phys Chem A 111:8677–8688, http://www.MolecularAssembler.com/Papers/TemelsoHDon.pdf

    Article  Google Scholar 

  71. Freitas RA Jr, Merkle RC (2008) A minimal toolset for positional diamond mechanosynthesis. J Comput Theor Nanosci 5:760–861

    Google Scholar 

  72. Tarasov D, Akberova N, Izotova E, Alisheva D, Astafiev M, Freitas RA Jr (2010) Optimal tooltip trajectories in a hydrogen abstraction tool recharge reaction sequence for positionally controlled diamond mechanosynthesis. J Comput Theor Nanosci 7:325–353, http://www.molecularassembler.com/Papers/TarasovFeb2010.pdf

    Article  Google Scholar 

  73. Lee HJ, Ho W (1999) Single bond formation and characterization with a scanning tunneling microscope. Science 286:1719–1722, http://www.physics.uci.edu/%7Ewilsonho/stm-iets.html

    Google Scholar 

  74. Oyabu N, Custance O, Yi I, Sugawara Y, Morita S (2003) Mechanical vertical manipulation of selected single atoms by soft nanoindentation using near contact atomic force microscopy. Phys Rev Lett 90:176102, http://link.aps.org/abstract/PRL/v90/e176102

    Article  Google Scholar 

  75. Oyabu N, Custance O, Abe M, Moritabe S (2004) Mechanical vertical manipulation of single atoms on the Ge(111)-c(2x8) surface by noncontact atomic force microscopy. In: Abstracts of seventh international conference on non-contact atomic force microscopy, Seattle, Washington, USA, 12–15 September 2004, p 34. http://www.engr.washington.edu/epp/afm/abstracts/15Oyabu2.pdf

  76. Sugimoto Y, Pou P, Custance O, Jelinek P, Abe M, Perez R, Morita S (2008) Complex patterning by vertical interchange atom manipulation using atomic force microscopy. Science 322:413–417, http://www.sciencemag.org/cgi/content/full/322/5900/413

    Article  Google Scholar 

  77. Nanofactory Collaboration (2008). Nanofactory Collaboration Colleague Awarded $3M to Conduct First Diamond Mechanosynthesis Experiments. Nanofactory Collaboration press release, 11 Aug 2008. http://www.MolecularAssembler.com/Nanofactory/Media/PressReleaseAug08.htm

  78. Tarasov D, Izotova E, Alisheva D, Akberova N, Freitas RA Jr (2011) Structural stability of clean, passivated, and partially dehydrogenated cuboid and octahedral nanodiamonds up to 2 nanometers in size. J Comput Theor Nanosci 8:147–167

    Article  Google Scholar 

  79. NIST (2004) Autonomous atom assembly. http://cnst.nist.gov/epg/Projects/STM/aaa_proj.html

  80. Tsui K, Geisberger AA, Ellis M, Skidmore GD (2004) Micromachined end-effector and techniques for directed MEMS assembly. J Micromech Microeng 14:542–549, http://dx.doi.org/10.1088/0960-1317/14/4/015

    Article  Google Scholar 

  81. Popa DO, Stephanou HE (2004) Micro- and meso-scale robotic assembly. SME J Manuf Proc 6:52–71

    Google Scholar 

  82. Sims M (2006) Molecular modeling in CAD. Mach Des 78:108–113

    Google Scholar 

  83. Freitas RA Jr, Merkle RC (2007) Remaining technical challenges for achieving positional diamondoid molecular manufacturing and diamondoid nanofactories. Nanofactory Collaboration website. http://www.MolecularAssembler.com/Nanofactory/Challenges.htm

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Freitas Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Freitas, R.A. (2013). Diamondoid Nanorobotics. In: Mavroidis, C., Ferreira, A. (eds) Nanorobotics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2119-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-2119-1_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-2118-4

  • Online ISBN: 978-1-4614-2119-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics