Skip to main content

Local Environmental Control Technique for Bacterial Flagellar Motor

  • Chapter
  • First Online:
Nanorobotics

Abstract

Micro/nanorobots have attracted scientific attention to develop novel technologies such as drug delivery systems. Recently, microorganisms, especially flagellated bacteria, have been used as propulsion for microobjects. To enhance the controllability of bacteria-driven microrobots, it is needed to establish a method to control the bacterial driving force directly. In many cases, the bacterial movements are regulated by the environment. Therefore, local environmental control technique is desired for bacterial driving force control. In this chapter, we introduce a local environmental control technique based on nano/micro dual pipettes for bacterial flagellar motor control. We show transient-state control of Na+-driven flagellar motor rotational speed by switching local discharges between Na+-containing and -free solutions, and steady-state control by simultaneous local discharges of the solutions with controlling discharge velocities independently. We found that rotational torque generated by the flagellar motor could be controlled in 102 pN·nm orders using the local environmental control technique based on nano/micro dual pipettes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cavalcanti A, Shirinzadeh B, Kretly LC (2008) Medical nanorobotics for diabetes control. Nanomedicine 4(2):127–138. doi:10.1016/j.nano.2008.03.001

    Article  Google Scholar 

  2. Cavalcanti A, Shirinzadeh B, Fukuda T, Ikeda S (2009) Nanorobot for brain aneurysm. Int J Robot Res 28(4):558–570. doi:10.1177/0278364908097586

    Article  Google Scholar 

  3. Martel S, Mohammadi M, Felfoul O, Lu Z, Pouponneau P (2009) Flagellated magnetotactic bacteria as controlled mri-trackable propulsion and steering systems for medical nanorobots operating in the human microvasculature. Int J Robot Res 28(4):571–582. doi:10.1177/0278364908100924

    Article  Google Scholar 

  4. Martel S, Felfoul O, Mathieu JB, Chanu A, Tamaz S, Mohammadi M, Mankiewicz M, Tabatabaei N (2009) MRI-based medical nanorobotic platform for the control of magnetic nanoparticles and flagellated bacteria for target interventions in human capillaries. Int J Robot Res 28(9):1169–1182. doi:10.1177/0278364908104855

    Article  Google Scholar 

  5. Patel GM, Patel GC, Patel RB, Patel JK, Patel M (2006) Nanorobot: a versatile tool in nanomedicine. J Drug Target 14(2):63–67. doi:10.1080/10611860600612862

    Article  Google Scholar 

  6. LaVan DA, McGuire T, Langer R (2003) Small-scale systems for in vivo drug delivery. Nat Biotechnol 21(10):1184–1191. doi:10.1038/nbt876

    Article  Google Scholar 

  7. Hede S, Huilgol N (2006) Nano: the new nemesis of cancer. J Cancer Res Ther 2(4):186–195. doi:10.4103/0973-1482.29829

    Article  Google Scholar 

  8. Osada Y, Gong JP (2009) Nano-biomachine from actin and myosin gels. Polym Sci A 51(6):689–700. doi:10.1134/S0965545X09060145

    Article  Google Scholar 

  9. Hiyama S, Moritani Y, Gojo R, Takeuchi S, Sutoh K (2010) Biomolecular-motor-based autonomous delivery of lipid vesicles as nano- or microscale reactors on a chip. Lab Chip 10(20):2741–2748. doi:10.1039/C004615A

    Article  Google Scholar 

  10. Soong RK, Bachand GD, Neves HP, Olkhovets AG, Craighead HG, Montemagno CD (2000) Powering an inorganic nanodevice with a biomolecular motor. Science 290(5496):1555–1558. doi:10.1126/science.290.5496.1555

    Article  Google Scholar 

  11. Akiyama Y, Iwabuchi K, Furukawa Y, Morishima K (2009) Long-term and room temperature operable bioactuator powered by insect dorsal vessel tissue. Lab Chip 9(1):140–144. doi:10.1039/B809299K

    Article  Google Scholar 

  12. Darnton N, Turner L, Breuer K, Berg HC (2004) Moving fluid with bacterial carpets. Biophys J 86(3):1863–1870. doi:10.1016/S0006-3495(04)74253-8

    Article  Google Scholar 

  13. Behkam B, Sitti M (2008) Effect of quantity and configuration of attached bacteria on bacterial propulsion of microbeads. Appl Phys Lett 93:223901. doi:10.1063/1.3040318

    Article  Google Scholar 

  14. Weibel DB, Garstecki P, Ryan D, DiLuzio WR, Mayer M, Seto JE, Whitesides GM (2005) Microoxen: microorganisms to move microscale loads. Proc Natl Acad Sci USA 102(34):11963–11967. doi:10.1073/pnas.0505481102

    Article  Google Scholar 

  15. Homma M, Oota H, Kojima S, Kawagishi I, Imae Y (1996) Chemotactic responses to an attractant and a repellent by the polar and lateral flagellar systems of Vibrio alginolyticus. Microbiology 142:2777–2783. doi:10.1099/13500872-142-10-2777

    Article  Google Scholar 

  16. Hyakutake A, Kawagishi I, Homma M (2004) Motility- and chemotaxis-related genes of Vibrio spp. and their involvement in virulence. Jpn J Bacteriol 59(2):403–414 (in Japanese)

    Article  Google Scholar 

  17. Walter JM, Greenfield D, Bustamante C, Liphardt J (2007) Light-powering Escherichia coli with proteorhodopsin. Proc Natl Acad Sci USA 104(7):2408–2412. doi:10.1073/pnas.0611035104

    Article  Google Scholar 

  18. Nogawa K, Kojima M, Nakajima M, Kojima S, Homma M, Fukuda T (2009) Rotational speed control of Na+-driven flagellar motor by dual pipettes. IEEE Trans Nanobiosci 8(4):341–348. doi:10.1109/TNB.2009.2035281

    Article  Google Scholar 

  19. Nogawa K, Kojima M, Nakajima M, Homma M, Fukuda T (2011) Driving force control of flagellar motor by local environmental control system with nano/micro dual pipettes. J Robot Soc Jpn 29(5):463–469 (in Japanese)

    Article  Google Scholar 

  20. Macnab R (1996) Flagella and motility. In: Neidhardt FC, Curtiss R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella: cellular and molecular. American Society for Microbiology, Washington, DC, pp 123–145

    Google Scholar 

  21. Yorimitsu T, Homma M (2001) Na+-driven flagellar motor of Vibrio. Biochim Biophys Acta 1505(1):82–93. doi:10.1016/S0005-2728(00)00279-6

    Article  Google Scholar 

  22. Aldridge P, Hughes KT (2002) Regulation of flagellar assembly. Curr Opin Microbiol 5(2):160–165. doi:10.1016/S1369-5274(02)00302-8

    Article  Google Scholar 

  23. Kojima S, Blair DF (2004) The bacterial flagellar motor: structure and function of a complex molecular machine. Int Rev Cytol 233:93–134. doi:10.1016/S0074-7696(04)33003-2

    Article  Google Scholar 

  24. Lo CJ, Leake MC, Pilizota T, Berry RM (2007) Nonequivalence of membrane voltage and iongradient as driving forces for the bacterial flagellar motor at low load. Biophys J 93(1):294–302. doi:10.1529/biophysj.106.095265

    Article  Google Scholar 

  25. Fung DC, Berg HC (1995) Powering the flagellar motor of Escherichia coli with an external voltage source. Nature 375(6534):809–812. doi:10.1038/375809a0

    Article  Google Scholar 

  26. Magariyama Y, Sugiyama S, Muramoto K, Kawagishi I, Imae Y, Kudo S (1995) Simultaneous measurement of bacterial flagellar rotation rate and swimming speed. Biophys J 69(5):2154–2162. doi:10.1016/S0006-3495(95)80089-5

    Article  Google Scholar 

  27. Piper JD, Li C, Lo CJ, Berry R, Korchev Y, Ying L, Klenerman D (2008) Characterization and application of controllable local chemical changes produced by reagent delivery from a nanopipet. J Am Chem Soc 130(31):10386–10393. doi:10.1021/ja8022253

    Article  Google Scholar 

  28. Silverman M, Simon M (1974) Flagellar rotation and the mechanism of bacterial motility. Nature 249(452):73–74. doi:10.1038/249073a0

    Article  Google Scholar 

  29. Howard J (2001) Mechanics of motor proteins and the cytoskeleton. Sinauer Associates, Sunderland, pp 106–107

    Google Scholar 

  30. Zhang L, Abbott JJ, Dong L, Peyer KE, Kratochvil BE, Zhang H, Bergeles C, Nelson BJ (2009) Characterizing the swimming properties of artificial bacterial flagella. Nano Lett 9(10):3663–3667. doi:10.1021/nl901869j

    Article  Google Scholar 

  31. Sánchez D, Anand U, Gorelik J, Benham CD, Bountra C, Lab M, Klenerman D, Birch R, Anand P, Korchev Y (2007) Localized and non-contact mechanical stimulation of dorsal root ganglion sensory neurons using scanning ion conductance microscopy. J Neurosci Methods 159(1):26–34. doi:10.1016/j.jneumeth.2006.06.018

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshio Fukuda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fukuda, T., Nogawa, K., Kojima, M., Nakajima, M., Homma, M. (2013). Local Environmental Control Technique for Bacterial Flagellar Motor. In: Mavroidis, C., Ferreira, A. (eds) Nanorobotics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2119-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-2119-1_20

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-2118-4

  • Online ISBN: 978-1-4614-2119-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics