Skip to main content

DNA for Self-Assembly

  • Chapter
  • First Online:
Nanorobotics

Abstract

Biological processes, and in particular DNA hybridization, offer the potential to form the basis for the assembly of nano-devices. DNA and RNA can be used to perform two types of functions: to assemble parts of nano-robot and to transmit information. This chapter focuses on the assembly function of DNA and its optimization. Indeed, these molecules possess computing properties based on the nucleic acid 4-letter alphabet which gives them programmable features. In order to determine the feasibility of such processes, the strength of DNA hybridization is measured and optimized using a method based on atomic force microscopy. The multidisciplinary work presented here targets the selection of DNA, the theoretical study, and the experimental validation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.golem-project.eu/.

  2. 2.

    A force field is an ensemble of numerical parameters determined by techniques such as crystallography.

  3. 3.

    The hypothetical axis of the double helix discussed in the local approach.

  4. 4.

    Percentage of nitrogenous bases on a DNA molecule that is either guanine or cytosine.

  5. 5.

    http://www.golem-project.eu/.

  6. 6.

    The sequence of nitrogenous bases is [(CAGT)5].

  7. 7.

    These configurations correspond to 20, 16, and 12 nitrogen bases consecutively hybridized.

  8. 8.

    The sequence S 1 proposed in the European project Golem (5’-3’): CAA ATA CCG TGG GAC GAC ACG CAC CGG CAG TGC GCA GGC AGC GTC GGA CAC AAC ACG CTT ACG GCC CTC AAC ACT.

  9. 9.

    According to the manufacturer, the tip of the beam can be likened to a sphere of diameter between 20 and 60 nm.

  10. 10.

    DNA base pairing: adenine (A) forms a base pair with thymine (T), and guanine (G) forms a base pair with cytosine (C).

  11. 11.

    mfold.

  12. 12.

    Complementarity between two segments with different indices from two complementary strands.

  13. 13.

    See Table 19.3.

References

  1. Fink HW (2001) DNA and conducting electrons. Cell Mol Life Sci 58:1–3

    Google Scholar 

  2. Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302, doi:10.1038/nature04586

    Google Scholar 

  3. Yu He, Tao Ye, Min Su, Chuan Zhang, Ribbe AE, Wen Jiang, Chengde Mao (2008) Titre. J Nature 452:198–201

    Google Scholar 

  4. Marti O, Drake B, Hansma PK (1987) Atomic force microscopy of liquid-covered surfaces: atomic resolution images. Appl Phys Lett 7:484–486

    Google Scholar 

  5. Butt H-J, Cappella B, Kappl M (2005) Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep 59:1–152

    Google Scholar 

  6. Saenger W (1983) Principles of nucleic acid structure. In: Charles RC (ed) Springer, New York

    Google Scholar 

  7. Rief M, Clausen-Schaumann H, Gaub HE (1999) Sequence-dependent mechanics of single DNA molecules. Nature Struct Biol 6:346–349, doi:10.1038/7582

    Google Scholar 

  8. Brandsdal Bo, Osterberg F, Almlöf F, Feierberg I, Luzhkov Vb, Aqvist J (2003) Free energy calculations and ligand binding. Adv Protein Chem 66:123–158

    Google Scholar 

  9. Leach A (2001) Molecular modelling: principles and applications, 2nd edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  10. Guvench O, MacKerell AD Jr (2008) Comparison of protein force fields for molecular dynamics simulations. In: Molecular modeling of proteins, 3rd edn. Humana Press, Springer

    Google Scholar 

  11. Daunay B, Micaelli A, Régnier S (2001) Energy-field reconstruction for haptics-based molecular docking using energy minimization processes. In: Actes de IROS’07: IEEE international conference on intelligent robots and systems (ACTI). San Diego, USA

    Google Scholar 

  12. Poland D, Scheraga HA (1966) Phase transitions in one dimension and the Helix-Coil transition in polyamino acid. J Chem Phys 45:1456

    Google Scholar 

  13. Neukirch S (2004) Extracting DNA twist rigidity from experimental supercoiling data. Phys Rev Lett 93:19

    Google Scholar 

  14. Nomura Y, Nakamura T, Feng Z, Kinjo M (2007) Direct Quantification of Gene Expression Using Fluorescence Correlation Spectroscopy. In: Current pharmaceutical biotechnology. Bentham Science Publishers, Japan

    Google Scholar 

  15. Glazer M, Fidanza JA, McGall GH et al (2006) Kinetics of oligonucleotide hybridization to photolithographically patterned DNA arrays. Anal Biochem 358:225–238

    Google Scholar 

  16. Zuker M (2006) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–15

    Google Scholar 

  17. SantaLucia Jr (1998) A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. PNAS 96:1460–1465

    Google Scholar 

  18. Williams MC, Wenner JR, Rouzina I, Bloomfield VA (2001) Effect of pH on the overstretching transition of double-stranded DNA: evidence of force-induced DNA melting. Biophys J 80:874–881

    Google Scholar 

  19. Rau DC, Lee B, Parsegian VA (1984) Measurement of the repulsive force between polyelectrolyte molecules in ionic solution: hydration forces between parallel DNA double helices. Proc Natl Acad Sci USA 81:2621–2625

    Google Scholar 

  20. Smith SB, Finzi L, Bustamante C (1992) Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science 258:1122–1126

    Google Scholar 

  21. Perkins TT, Quake SR, Smith DE, Chu S (1994) Relaxation of a single DNA molecule observed by optical microscopy. Science 264:822–826

    Google Scholar 

  22. Essevaz-Roulet B, Bockelmann U, Heslot F (1997) Mechanical separation of the complementary strands of DNA. Proc Natl Acad Sci USA 94:22

    Google Scholar 

  23. Bockelmann U, Thomen Ph, Essevaz-Roulet B, Viasnoff V, Heslot F (2002) Unzipping DNA with optical tweezers: high sequence sensitivity and force flips. Biophys J 82:1537–1553

    Google Scholar 

  24. Binnig G, Quate CF, Gerber Ch (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Google Scholar 

  25. Lee GU, Chrisey LA, Colton RJ (1994) Direct measurement of the forces between complementary strands of DNA. Science 266:771–773

    Google Scholar 

  26. Florin EL, Moy VT, Gaub HE (1994) Adhesion forces between individual ligand-receptor pairs. Science 264:415–417

    Google Scholar 

  27. Strunz, Torsten et al (1999) Dynamic force spectroscopy of single DNA molecules. Proc Natl Acad Sci USA 96:11277–11282

    Google Scholar 

  28. Evans E, Ritchie K (1999) Strength of a weak bond connecting flexible polymer chains. Biophys J 76:2439–2447, doi: 10.1016/S0006-3495(99)77399-6

    Google Scholar 

  29. Sattin BD, Pelling AE, Goh CM (2004) DNA base pair resolution by single molecule force spectroscopy. Nucleic Acids Res 32:4876–4883

    Google Scholar 

  30. Morfill J, Khner F, Blank K et al (2007) B-S transition in short oligonucleotides. Biophys J 93:2400–2409, doi: 10.1529/biophysj.107.106112

    Google Scholar 

  31. Evans E, Ritchie K (1997) Dynamic strength of molecular adhesion bonds. Biophys J 72:1541–1555, doi: 10.1016/S0006-3495(97)78802-7

    Google Scholar 

  32. Janovjak H, Sapra KT, Mller DJ (2005) Complex stability of single proteins explored by forced unfolding experiments. Biophys J 88:37–39

    Google Scholar 

  33. Odrowaz PM, Czuba P, Targosz M, Burda K, Szymonski M (2006) Dynamic force measurements of avidin-biotin and streptavdin-biotin interactions using AFM. Acta Biochim Pol 53:93–100

    Google Scholar 

  34. Liu W et al (2008) Comparative energy measurements in single molecule interactions. Biophys J 95:419–425

    Google Scholar 

  35. Bell GI (1978) Models for the specific adhesion of cells to cells. Science 200:618–627

    Google Scholar 

  36. Kramers H (1940) Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7:284–304

    Google Scholar 

  37. Adleman LM (1994) Molecular computation of solutions to combinatorial problems. Science 266:1021–1024

    Google Scholar 

  38. Seeman NC, Kallenbach NR (1983) Design of immobile nucleic acid junctions. Biophys J 44:201–209

    Google Scholar 

  39. Hartemink AJ, Hartemink ErJ, Gifford DK, Khodor J (1998) Automated constraint-based nucleotide sequence selection for DNA computation. In: 4th Int. meeting on DNA-based computing, pp 227–235

    Google Scholar 

  40. Penchovsky R, Ackermann J (2003) DNA library design for molecular computation. J Comput Biol 10:215–229

    Google Scholar 

  41. Frutos AG, Thiel AJ, Condon AE, Smith LM, Corn RM (1997) DNA computing at surfaces: four base mismatch word design. In: 3rd DIMACS workshop DNA based comput. The rise of modern genomics 238

    Google Scholar 

  42. Masanori Arita (2002) DNA sequence design using templates.

    Google Scholar 

  43. Feldkamp U, Saghafi S et al (2002) DNA Computing. In: DNASequenceGenerator: a program for the construction of DNA sequences. Springer, Berlin, SpringerLink

    Google Scholar 

  44. Tanaka F, Nakatsugawa M, Yamamoto M, Shiba T, Ohuchi A (2001) Developing support system for sequence design in DNA computing. In: 7th Int. workshop DNA based comput, pp 340–349

    Google Scholar 

  45. Marathe A, Condon AE, Corn RM (1999) On combinatorial DNA word design. In: 5th DIMACS workshop DNA based comput, pp 75–89

    Google Scholar 

  46. Deaton R, Chen J, Bi H, Rose JA (2002) TA software tool for generating noncrosshybridization libraries of DNA oligonucleotides. In: 8th Int. workshop DNA based comput, pp 252–261

    Google Scholar 

  47. Shin S, Lee I, Kim D, Zhang B (2005) Multi-objective evolutionary optimization of DNA sequences for reliable DNA computing. IEEE Trans Evol Comput 9:143–158

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Régnier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Abbaci, A., Régnier, S. (2013). DNA for Self-Assembly. In: Mavroidis, C., Ferreira, A. (eds) Nanorobotics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2119-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-2119-1_19

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-2118-4

  • Online ISBN: 978-1-4614-2119-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics