Skip to main content

Nonlinear Recognition Methods for Oncological Pathologies

  • Chapter
  • First Online:
Data Mining for Biomarker Discovery

Abstract

A biomarker, or biological marker is a substance used as an indicator of a biological state. It is used in many scientific fields. The determination and function of the biomarker can be formalized more precisely by using Nonlinear Recognition Methods for accurate identification of oncological pathologies and both the pathogenic processes and pharmacologic response to a therapeutic intervention by applying dynamical systems and chaotic algorithms to determine the biological state and its dynamics. To this end a classification problem is solved based on optimal nonlinear algorithm, and it will be shown that certainty equivalent predictions are derived. Application results will be given on available test data sets of gastroscopic and colonoscopic images. The increase in the recognition accuracy is attributable to the algorithm and a strict statistical methodology without extraneous assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

 eferences

  1. G. Bonifazi, P. Massacci, L. Nieddu, and G. Patrizi. The classification of industrial sand-ores by image recognition methods. In Proceedings of 13th International Conference on Pattern Recognition Systems, vol.4: Parallel and Connectionist Systems, pp. 174–179, Los Alamitos, CA, 1996. IEEE Computer Society Press.

    Google Scholar 

  2. R. B. Braithwaite. Scientific Explanation: A Study of the Function of Theory, Probability, and Law in Science. Cambridge University Press, Cambridge, 1953.

    MATH  Google Scholar 

  3. C. Cifarelli and G. Patrizi. Solving large protein secondary structure classification problems by a nonlinear complementarity algorithm with 0, 1 variables. Optimization Methods and Software, 22:25–49, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  4. L. Devroye, L. Gyorfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition. Springer-Verlag, Berlin, 1996.

    MATH  Google Scholar 

  5. L. Di Giacomo, E. Argento, and G. Patrizi. Linear complementarity methods for the solution of combinatorial problems. Informs Journal of Computing, 19:73–79, 2007.

    Article  Google Scholar 

  6. L. Di Giacomo and G. Patrizi. Methodological analysis of supply chain management applications. European Journal of Operational Research, 207:249–257, 2010.

    Article  Google Scholar 

  7. R. O. Duda and P. E. Hart. Pattern Recognition and Scene Analysis. Wiley, New York, 1973.

    Google Scholar 

  8. J.-S. Pang F. Facchinei. Finite-Dimensional Variational inequalities and complementarity Problems. Springer, Berlin, 2003.

    Google Scholar 

  9. H. S. Konjin. Statistical Theory of Sample Design and Analysis. North Holland, Amsterdam, 1973.

    Google Scholar 

  10. L. Nieddu and G. Patrizi. Formal properties of pattern recognition algorithms: A review. European Journal of Operational Research, 120:459–495, 2000.

    Article  MATH  Google Scholar 

  11. G. Patrizi. Optimal clustering properties. Ricerca Operativa, 10:41–64, 1979.

    Google Scholar 

  12. G. Patrizi. The equivalence of an lcp to a parametric linear program with a scalar paramter. European Journal of Operational Research, 51:367–386, 1991.

    Article  MATH  Google Scholar 

  13. Giacomo Patrizi, L. Nieddu, P. Mingazzini, F. Paparo, Gregorio Patrizi, C. Provenza, F. Ricci, and L. Memeo. Algoritmi di supporto alla diagnosi istopatologica delle neoplasie del colon. In C. Davino and N. C. Lauro, editors, Data Mining e Analisi Simbolica, pp. 205–223. Franco Angeli, Milano, 2004.

    Google Scholar 

  14. Gregorio Patrizi, C. Cifarelli, V. Losacco, and Giacomo Patrizi. Secondary structure classification of isoform protein markers in oncology. In R. Bruni, editor, Mathematical Approaches to Polymer Sequence Analysis and Related Problems, pp. 47–67. Springer, New York, 2011.

    Google Scholar 

  15. P. Rubiczey, A. Tordai, H. Andrikovics amd A. G. Filoteo, J. T. Penniston, J. Enouf, A. Enyedi, B. Papp, and T. Kovacs. Isoform-specific up-regulation of plasma membrane Ca2 +  ATPase expression during colon and gastric cancer cell differentiation. Cell Calcium, 42:590–605, 2007.

    Google Scholar 

  16. A. Stangelberger, M. Margreiter, C. Seitz, and B. Djavan. Prostate cancer screening makers. The Journal of Men’s Health & Gender, 4:233–244, 2007.

    Article  Google Scholar 

  17. I. E. Tothill. Biosensors for cancer markers diagnosis. Seminars in Cell and Development Biology, 20:55–62, 2009.

    Article  Google Scholar 

  18. V. N. Vapnik. Learning Theory. Wiley, New York, 1998.

    MATH  Google Scholar 

  19. R. Wolf, C. Vascopoulos, J. Winston, A. Dharamsi, P. Goldsmith, M. Gunsior, B. K. Vonderhaar, M. Olson, and P. H. Watson. Highly homologous hs100a15 and hs100a7 proteins are distinctly expressed in normal breast tissue and breast cancer. Cancer Letters, 277:101–107, 2009.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregorio Patrizi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Patrizi, G. et al. (2012). Nonlinear Recognition Methods for Oncological Pathologies. In: Pardalos, P., Xanthopoulos, P., Zervakis, M. (eds) Data Mining for Biomarker Discovery. Springer Optimization and Its Applications(), vol 65. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2107-8_9

Download citation

Publish with us

Policies and ethics