Skip to main content

Application of Decomposition Methods in the Filtering of Event-Related Potentials

  • Chapter
  • First Online:
Data Mining for Biomarker Discovery

Abstract

The processes giving rise to an event-related potential engage several evoked and induced oscillatory components, which reflect phase or nonphase locked activity throughout the multiple trials of an experiment. The separation and identification of such components could not only serve diagnostic purposes but also facilitate the design of brain–computer interface systems. However, the effective analysis of components is hindered by many factors including the complexity of the EEG signal and its variation over the trials. In this chapter, we study several measures for the identification of the nature of independent components and propose a complete methodology for efficient decomposition of the rich information content embedded in the multichannel EEG recordings associated with the multiple trials of an event-related experiment. The efficiency of the proposed methodology is demonstrated through simulated and real experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Basar. Brain Function and Oscillations. Vol. I: Principles and Ap-proaches. Springer, Berlin, 1999.

    Google Scholar 

  2. E.M. Bernat, S.M. Malone, W.J. Williams, C.J. Patrick, and W.G. Iacono. Decomposing delta, theta, and alpha time-frequency ERP activity from a visual oddball task using PCA. International journal of psychophysiology, 64(1):62–74, 2007.

    Article  Google Scholar 

  3. E.M. Bernat, W.J. Williams, and W.J. Gehring. Decomposing ERP time-frequency energy using PCA. Clinical neurophysiology, 116(6):1314–1334, 2005.

    Article  Google Scholar 

  4. L. Cohen. Time-frequency distributions-a review. Proceedings of the IEEE, 77(7):941–981, 1989.

    Article  Google Scholar 

  5. I. Daubechies. The wavelet transform, time-frequency localization and signal analysis. IEEE Transactions on Information Theory, 36(5):961–1005, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  6. T. Demiralp, A. Ademoglu, Y. Istefanopulos, C. Basar-Eroglu, and E. Basar. Wavelet analysis of oddball P300. International journal of psychophysiology, 39(2-3):221–227, 2001.

    Article  Google Scholar 

  7. J. Dien, K.M. Spencer, and E. Donchin. Parsing the late positive complex: Mental chronometry and the ERP components that inhabit the neighborhood of the P300. Psychophysiology, 41(5):665–678, 2004.

    Article  Google Scholar 

  8. A. Graps. An introduction to wavelets. Computational Science & Engineering, IEEE, 2(2):50–61, 1995.

    Article  Google Scholar 

  9. H.J. Heinze, T.F. MĂĽnte, and G.R. Mangun. Cognitive Electrophysiology. Birkhauser, Boston, 1994.

    Book  Google Scholar 

  10. B.W. Jervis, S.Y. Belal, K. Camilleri, T. Cassar, S. Fabri, D.E.J. Linden, K. Michalopoulos, M. Zervakis, C. Bigan, and M. Besleaga. “applying ica to single trial auditory p300 and cnv evoked potentials to provide biomarkers”,. In CIMED2007, 2007.

    Google Scholar 

  11. T.P. Jung, S. Makeig, M.J. McKeown, A.J. Bell, T.W. Lee, and T.J. Sejnowski. Imaging brain dynamics using independent component analysis. Proceedings of the IEEE, 89(7):1107–1122, 2001.

    Article  Google Scholar 

  12. T.P. Jung, S. Makeig, M. Westerfield, J. Townsend, E. Courchesne, and T.J. Sejnowski. Analysis and visualization of single-trial event-related potentials. Human Brain Mapping, 14(3):166–185, 2001.

    Article  Google Scholar 

  13. J. Kalcher and G. Pfurtscheller. Discrimination between phase-locked and non-phase-locked event-related EEG activity. Electroencephalography and clinical Neurophysiology, 94(5):381–384, 1995.

    Article  Google Scholar 

  14. W. Klimesch, M. Doppelmayr, D. Röhm, D. Pöllhuber, and W. Stadler. Simultaneous desynchronization and synchronization of different alpha responses in the human electroencephalograph: a neglected paradox? Neuroscience letters, 284(1-2):97–100, 2000.

    Article  Google Scholar 

  15. C.M. Krause, L. Sillanmäki, M. Koivisto, C. Saarela, A. Häggqvist, M. Laine, and H. Hämäläinen. The effects of memory load on event-related EEG desynchronization and synchronization. Clinical neurophysiology, 111(11):2071–2078, 2000.

    Article  Google Scholar 

  16. Cohen L. Time-frequency signal analysis, chapter A primer on time frequency distributions, pages 3–42. Melbourne: Longman Cheshire., 1992.

    Google Scholar 

  17. P.L. Lee, Y.T. Wu, L.F. Chen, Y.S. Chen, C.M. Cheng, T.C. Yeh, L.T. Ho, M.S. Chang, and J.C. Hsieh. ICA-based spatiotemporal approach for single-trial analysis of postmovement MEG beta synchronization* 1. Neuroimage, 20(4):2010–2030, 2003.

    Article  Google Scholar 

  18. S. Makeig, S. Debener, J. Onton, and A. Delorme. Mining event-related brain dynamics. Trends in Cognitive Sciences, 8(5):204–210, 2004.

    Article  Google Scholar 

  19. S. Makeig, A. Delorme, M. Westerfield, T.P. Jung, J. Townsend, E. Courchesne, and T.J. Sejnowski. Electroencephalographic brain dynamics following manually responded visual targets. PLoS Biology, 2:747–762, 2004.

    Article  Google Scholar 

  20. S. Makeig, M. Westerfield, T.P. Jung, S. Enghoff, J. Townsend, E. Courchesne, and T.J. Sejnowski. Dynamic brain sources of visual evoked responses. Science, 295(5555):690, 2002.

    Google Scholar 

  21. F. Miwakeichi, E. Martinez-Montes, P.A. Valdés-Sosa, N. Nishiyama, H. Mizuhara, and Y. Yamaguchi. Decomposing EEG data into space-time-frequency components using parallel factor analysis. NeuroImage, 22(3):1035–1045, 2004.

    Article  Google Scholar 

  22. J. Polich. Updating P300: an integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10):2128–2148, 2007.

    Article  Google Scholar 

  23. B. Porjesz, M. Rangaswamy, C. Kamarajan, K.A. Jones, A. Padmanabhapillai, and H. Begleiter. The utility of neurophysiological markers in the study of alcoholism. Clinical Neurophysiology, 116(5):993–1018, 2005.

    Article  Google Scholar 

  24. E.W. Sellers, D.J. Krusienski, D.J. McFarland, T.M. Vaughan, and J.R. Wolpaw. A P300 event-related potential brain-computer interface (BCI): the effects of matrix size and inter stimulus interval on performance. Biological Psychology, 73(3):242–252, 2006.

    Article  Google Scholar 

  25. C. Tallon-Baudry and O. Bertrand. Oscillatory gamma activity in humans and its role in object representation. Trends Cogn Sci, 3(4):151–162, 1999.

    Article  Google Scholar 

  26. C. Tallon-Baudry, O. Bertrand, C. Delpuech, and J. Pernier. Stimulus specificity of phase-locked and non-phase-locked 40 Hz visual responses in human. Journal of Neuroscience, 16(13):4240, 1996.

    Google Scholar 

  27. A.C. Tsai, M. Liou, T.P. Jung, J.A. Onton, P.E. Cheng, C.C. Huang, J.R. Duann, and S. Makeig. Mapping single-trial EEG records on the cortical surface through a spatiotemporal modality. NeuroImage, 32(1):195–207, 2006.

    Article  Google Scholar 

  28. Williams WJ. Wavelet transforms and time-frequency signal analysis, chapter Reduced interference time-frequency distributions: scaled decompositions and interpretations, page R381–417. Cambridge: Birkhauser, 1992.

    Google Scholar 

  29. V. Wyart and C. Tallon-Baudry. Neural dissociation between visual awareness and spatial attention. Journal of Neuroscience, 28(10):2667, 2008.

    Google Scholar 

  30. J. Yordanova, V. Kolev, and J. Polich. P300 and alpha event-related desynchronization (ERD). Psychophysiology, 38(01):143–152, 2001.

    Article  Google Scholar 

Download references

Acknowledgements

Present work was supported by a research fund from the Research Committee of the Technical University of Crete. The authors would like to thank Prof. Cristin Bigan at the Ecological University of Bucharest, Romania for kindly providing the EEG dataset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kostas Michalopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Michalopoulos, K., Iordanidou, V., Zervakis, M. (2012). Application of Decomposition Methods in the Filtering of Event-Related Potentials. In: Pardalos, P., Xanthopoulos, P., Zervakis, M. (eds) Data Mining for Biomarker Discovery. Springer Optimization and Its Applications(), vol 65. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2107-8_2

Download citation

Publish with us

Policies and ethics