Advertisement

Application of Decomposition Methods in the Filtering of Event-Related Potentials

  • Kostas MichalopoulosEmail author
  • Vasiliki Iordanidou
  • Michalis Zervakis
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 65)

Abstract

The processes giving rise to an event-related potential engage several evoked and induced oscillatory components, which reflect phase or nonphase locked activity throughout the multiple trials of an experiment. The separation and identification of such components could not only serve diagnostic purposes but also facilitate the design of brain–computer interface systems. However, the effective analysis of components is hindered by many factors including the complexity of the EEG signal and its variation over the trials. In this chapter, we study several measures for the identification of the nature of independent components and propose a complete methodology for efficient decomposition of the rich information content embedded in the multichannel EEG recordings associated with the multiple trials of an event-related experiment. The efficiency of the proposed methodology is demonstrated through simulated and real experiments.

Keywords

Independent Component Analysis Event Related Potential Independent Component Analysis Event Related Desynchronization Independent Component Analysis Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Present work was supported by a research fund from the Research Committee of the Technical University of Crete. The authors would like to thank Prof. Cristin Bigan at the Ecological University of Bucharest, Romania for kindly providing the EEG dataset.

References

  1. 1.
    E. Basar. Brain Function and Oscillations. Vol. I: Principles and Ap-proaches. Springer, Berlin, 1999.Google Scholar
  2. 2.
    E.M. Bernat, S.M. Malone, W.J. Williams, C.J. Patrick, and W.G. Iacono. Decomposing delta, theta, and alpha time-frequency ERP activity from a visual oddball task using PCA. International journal of psychophysiology, 64(1):62–74, 2007.CrossRefGoogle Scholar
  3. 3.
    E.M. Bernat, W.J. Williams, and W.J. Gehring. Decomposing ERP time-frequency energy using PCA. Clinical neurophysiology, 116(6):1314–1334, 2005.CrossRefGoogle Scholar
  4. 4.
    L. Cohen. Time-frequency distributions-a review. Proceedings of the IEEE, 77(7):941–981, 1989.CrossRefGoogle Scholar
  5. 5.
    I. Daubechies. The wavelet transform, time-frequency localization and signal analysis. IEEE Transactions on Information Theory, 36(5):961–1005, 1990.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    T. Demiralp, A. Ademoglu, Y. Istefanopulos, C. Basar-Eroglu, and E. Basar. Wavelet analysis of oddball P300. International journal of psychophysiology, 39(2-3):221–227, 2001.CrossRefGoogle Scholar
  7. 7.
    J. Dien, K.M. Spencer, and E. Donchin. Parsing the late positive complex: Mental chronometry and the ERP components that inhabit the neighborhood of the P300. Psychophysiology, 41(5):665–678, 2004.CrossRefGoogle Scholar
  8. 8.
    A. Graps. An introduction to wavelets. Computational Science & Engineering, IEEE, 2(2):50–61, 1995.CrossRefGoogle Scholar
  9. 9.
    H.J. Heinze, T.F. Münte, and G.R. Mangun. Cognitive Electrophysiology. Birkhauser, Boston, 1994.CrossRefGoogle Scholar
  10. 10.
    B.W. Jervis, S.Y. Belal, K. Camilleri, T. Cassar, S. Fabri, D.E.J. Linden, K. Michalopoulos, M. Zervakis, C. Bigan, and M. Besleaga. “applying ica to single trial auditory p300 and cnv evoked potentials to provide biomarkers”,. In CIMED2007, 2007.Google Scholar
  11. 11.
    T.P. Jung, S. Makeig, M.J. McKeown, A.J. Bell, T.W. Lee, and T.J. Sejnowski. Imaging brain dynamics using independent component analysis. Proceedings of the IEEE, 89(7):1107–1122, 2001.CrossRefGoogle Scholar
  12. 12.
    T.P. Jung, S. Makeig, M. Westerfield, J. Townsend, E. Courchesne, and T.J. Sejnowski. Analysis and visualization of single-trial event-related potentials. Human Brain Mapping, 14(3):166–185, 2001.CrossRefGoogle Scholar
  13. 13.
    J. Kalcher and G. Pfurtscheller. Discrimination between phase-locked and non-phase-locked event-related EEG activity. Electroencephalography and clinical Neurophysiology, 94(5):381–384, 1995.CrossRefGoogle Scholar
  14. 14.
    W. Klimesch, M. Doppelmayr, D. Röhm, D. Pöllhuber, and W. Stadler. Simultaneous desynchronization and synchronization of different alpha responses in the human electroencephalograph: a neglected paradox? Neuroscience letters, 284(1-2):97–100, 2000.CrossRefGoogle Scholar
  15. 15.
    C.M. Krause, L. Sillanmäki, M. Koivisto, C. Saarela, A. Häggqvist, M. Laine, and H. Hämäläinen. The effects of memory load on event-related EEG desynchronization and synchronization. Clinical neurophysiology, 111(11):2071–2078, 2000.CrossRefGoogle Scholar
  16. 16.
    Cohen L. Time-frequency signal analysis, chapter A primer on time frequency distributions, pages 3–42. Melbourne: Longman Cheshire., 1992.Google Scholar
  17. 17.
    P.L. Lee, Y.T. Wu, L.F. Chen, Y.S. Chen, C.M. Cheng, T.C. Yeh, L.T. Ho, M.S. Chang, and J.C. Hsieh. ICA-based spatiotemporal approach for single-trial analysis of postmovement MEG beta synchronization* 1. Neuroimage, 20(4):2010–2030, 2003.CrossRefGoogle Scholar
  18. 18.
    S. Makeig, S. Debener, J. Onton, and A. Delorme. Mining event-related brain dynamics. Trends in Cognitive Sciences, 8(5):204–210, 2004.CrossRefGoogle Scholar
  19. 19.
    S. Makeig, A. Delorme, M. Westerfield, T.P. Jung, J. Townsend, E. Courchesne, and T.J. Sejnowski. Electroencephalographic brain dynamics following manually responded visual targets. PLoS Biology, 2:747–762, 2004.CrossRefGoogle Scholar
  20. 20.
    S. Makeig, M. Westerfield, T.P. Jung, S. Enghoff, J. Townsend, E. Courchesne, and T.J. Sejnowski. Dynamic brain sources of visual evoked responses. Science, 295(5555):690, 2002.Google Scholar
  21. 21.
    F. Miwakeichi, E. Martinez-Montes, P.A. Valdés-Sosa, N. Nishiyama, H. Mizuhara, and Y. Yamaguchi. Decomposing EEG data into space-time-frequency components using parallel factor analysis. NeuroImage, 22(3):1035–1045, 2004.CrossRefGoogle Scholar
  22. 22.
    J. Polich. Updating P300: an integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10):2128–2148, 2007.CrossRefGoogle Scholar
  23. 23.
    B. Porjesz, M. Rangaswamy, C. Kamarajan, K.A. Jones, A. Padmanabhapillai, and H. Begleiter. The utility of neurophysiological markers in the study of alcoholism. Clinical Neurophysiology, 116(5):993–1018, 2005.CrossRefGoogle Scholar
  24. 24.
    E.W. Sellers, D.J. Krusienski, D.J. McFarland, T.M. Vaughan, and J.R. Wolpaw. A P300 event-related potential brain-computer interface (BCI): the effects of matrix size and inter stimulus interval on performance. Biological Psychology, 73(3):242–252, 2006.CrossRefGoogle Scholar
  25. 25.
    C. Tallon-Baudry and O. Bertrand. Oscillatory gamma activity in humans and its role in object representation. Trends Cogn Sci, 3(4):151–162, 1999.CrossRefGoogle Scholar
  26. 26.
    C. Tallon-Baudry, O. Bertrand, C. Delpuech, and J. Pernier. Stimulus specificity of phase-locked and non-phase-locked 40 Hz visual responses in human. Journal of Neuroscience, 16(13):4240, 1996.Google Scholar
  27. 27.
    A.C. Tsai, M. Liou, T.P. Jung, J.A. Onton, P.E. Cheng, C.C. Huang, J.R. Duann, and S. Makeig. Mapping single-trial EEG records on the cortical surface through a spatiotemporal modality. NeuroImage, 32(1):195–207, 2006.CrossRefGoogle Scholar
  28. 28.
    Williams WJ. Wavelet transforms and time-frequency signal analysis, chapter Reduced interference time-frequency distributions: scaled decompositions and interpretations, page R381–417. Cambridge: Birkhauser, 1992.Google Scholar
  29. 29.
    V. Wyart and C. Tallon-Baudry. Neural dissociation between visual awareness and spatial attention. Journal of Neuroscience, 28(10):2667, 2008.Google Scholar
  30. 30.
    J. Yordanova, V. Kolev, and J. Polich. P300 and alpha event-related desynchronization (ERD). Psychophysiology, 38(01):143–152, 2001.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Kostas Michalopoulos
    • 1
    Email author
  • Vasiliki Iordanidou
    • 1
  • Michalis Zervakis
    • 1
  1. 1.Department of Electronic and Computer EngineeringTechnical University of CreteChaniaGreece

Personalised recommendations