Skip to main content

Cell and Tissue Therapy in Regenerative Medicine

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 741))

Abstract

Cell therapy is one of the most promising future techniques in the medical arsenal for the repair of damaged or destroyed tissue. The diseases which cell therapy can target are very varied: Hormonal dysfunction, such as diabetes and growth hormone deficiency; neurodegenerative diseases, such as Parkinson’s, Alzheimer’s and Huntington’s; and cardiovascular lesions, such as myocardial infarction, peripheral vascular ischaemia; as well as lesions in the cornea, skeletal muscle, skin, joints and bones etc. The objective of cell therapy is to restore the lost function rather than produce a new organ, which could cause duplicity and undesirable effects. Several resources of cells can be used to restore the damaged tissue, such as resident stem cells, multipotent adult progenitor cells or embryonic stem cells. Some cell therapies have been established and approved for clinical use, such as artificial skin derived from keratinocytes, derived from chondrocyte, cells of the corneal limbus or pancreatic islet transplantation. These therapies have had good results, although the scarcity of the starting material may represent a serious limitation. Other therapies under research, using pluripotent stem cells, have been modest so it is useful to review the protocols and try to improve the outcomes. In this chapter we will review the new advances made in this way.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sánchez A, García-Sancho J. Progenitor cells for cardiac regeneration. In: Dib N, Taylor DA, Diethrich EB, eds. Stem Cell Therapy and Tissue Engineering for Cardiovascular Repair. New York: Springer, 2005; 121–134.

    Google Scholar 

  2. Morrison SJ, Spradling AC. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 2008; 132:598–611.

    Article  PubMed  CAS  Google Scholar 

  3. Collas P. Nuclear reprogramming in cell-free extracts. Philos Trans R Soc Lond B Biol Sci 2003; 358: 1389–1395.

    Article  PubMed  CAS  Google Scholar 

  4. Collas P, Taranger CK. Epigenetic reprogramming of nuclei using cell extracts. Stem Cell Rev 2006; 2:309–317.

    Article  PubMed  CAS  Google Scholar 

  5. Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 2003; 425:968–973.

    Article  PubMed  CAS  Google Scholar 

  6. Sanai N, Tramontin AD, Quiñones-Hinojosa A et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 2004; 427:740–744.

    Article  PubMed  CAS  Google Scholar 

  7. Urbanek K, Torella D, Sheikh F et al. Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proc Natl Acad Sci USA 2005; 102:8692–8697.

    Article  PubMed  CAS  Google Scholar 

  8. Leri A, Kajstura J, Anversa P. Cardiac stem cells and mechanisms of myocardial regeneration. Physiol Rev 2005; 85:1373–1416.

    Article  PubMed  CAS  Google Scholar 

  9. Pardal R, Ortega-Sáenz P, Durán R et al. Glia-like stem cells sustain physiologic neurogenesis in the adult mammalian carotid body. Cell 2007; 131:364–377.

    Article  PubMed  CAS  Google Scholar 

  10. Caplan AI. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 2007; 213:341–347.

    Article  PubMed  CAS  Google Scholar 

  11. Harris DT, Rogers I. Umbilical cord blood: a unique source of pluripotent stem cells for regenerative medicine. Curr Stem Cell Res Ther 2007; 2:301–309.

    Article  PubMed  CAS  Google Scholar 

  12. Llames S, García E, García V et al. Clinical results of an autologous engineered skin. Cell Tissue Bank 2006; 7:47–53.

    Article  PubMed  Google Scholar 

  13. Steinwachs M, Kreuz PC. Autologous chondrocyte implantation in chondral defects of the knee with a type I/III collagen membrane: a prospective study with a 3-year follow-up. Arthroscopy 2007; 23: 381–387.

    Article  PubMed  Google Scholar 

  14. Yang X, Moldovan NI, Zhao Q et al. Reconstruction of damaged cornea by autologous transplantation of epidermal adult stem cells. Mol Vis 2008; 14:1064–1070.

    PubMed  CAS  Google Scholar 

  15. Shapiro AM, Ricordi C, Hering BJ et al. International trial of the Edmonton protocol for islet transplantation. N Engl J Med 2006; 355:1318–1330.

    Article  PubMed  CAS  Google Scholar 

  16. Quaini F, Urbanek K, Beltrami AP et al. Chimerism of the transplanted heart. N Engl J Med 2002; 346:5–15.

    Article  PubMed  Google Scholar 

  17. Mezey E, Key S, Vogelsang G et al. Transplanted bone marrow generates new neurons in human brains. Proc Natl Acad Sci USA 2003; 100:1364–1369.

    Article  PubMed  CAS  Google Scholar 

  18. Sánchez A, Fernández ME, Rodríguez A et al. experimental models for cardiac regeneration. Nature Clin Pract Cardiovasc Med 2006; 1:S29–S32.

    Article  Google Scholar 

  19. Lin F, Cordes K, Li L et al. Hematopoietic stem cells contribute to the regeneration of renal tubules after renal ischaemia-reperfusion injury in mice. J Am Soc Nephrol 2003; 14:1188–1199.

    Article  PubMed  Google Scholar 

  20. Orlic D, Kajstura J, Chimenti S et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001; 410:701–705.

    Article  PubMed  CAS  Google Scholar 

  21. Sánchez A, García-Sancho J. Cardiac repair by stem cells. Cell Death Differ 2007; 14:1258–1261.

    Article  PubMed  Google Scholar 

  22. Lipinski MJ, Biondi-Zoccai GG, Abbate A et al. Impact of intracoronary cell therapy on left ventricular function in the setting of acute myocardial infarction: a collaborative systematic review and meta-analysis of controlled clinical trials. J Am Coll Cardiol 2007; 50:1761–1767.

    Article  PubMed  Google Scholar 

  23. Fernandez-Aviles F, San Roman JA, Garcia-Frade J et al. Experimental and clinical regenerative capability of human bone marrow cells after myocardial infarction. Circ Res 2004; 95:742–748.

    Article  PubMed  CAS  Google Scholar 

  24. Rubio D, Garcia-Castro J, Martín MC et al. Spontaneous human adult stem cell transformation. Cancer Res 2005; 65:3035–3039.

    PubMed  CAS  Google Scholar 

  25. Garcia-Olmo D, Garcia-Arranz M, Herreros D et al. Expanded adipose-derived stem cells for the treatment of complex perianal fistula including Crohn’s disease. Expert Opin Biol Ther 2008; 8:1417–1423.

    Article  PubMed  CAS  Google Scholar 

  26. Mínguez-Castellanos A, Escamilla-Sevilla F, Hotton GR et al. Carotid body autotransplantation in Parkinson disease: a clinical and positron emission tomography study. J Neurol Neurosurg Psychiatry 2007; 78: 825–831.

    Article  PubMed  Google Scholar 

  27. Pascual A, Hidalgo-Figueroa M, Piruat JI et al. Absolute requirement of GDNF for adult catecholaminergic neuron survival. Nat Neurosci 2008; 11:755–761.

    Article  PubMed  CAS  Google Scholar 

  28. Canals JM, Pineda JR, Torres-Peraza JF et al. Brain-derived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington’s disease. J Neurosci 2004; 24:7727–7739.

    Article  PubMed  CAS  Google Scholar 

  29. Anversa P, Kajstura J, Leri A et al. Life and death of cardiac stem cells: a paradigm shift in cardiac biology. Circulation 2006; 113:1451–1463.

    Article  PubMed  Google Scholar 

  30. Jackson EL, Alvarez-Buylla A. Characterization of adult neural stem cells and their relation to brain tumors. Cells Tissues Organs 2008; 188:212–224.

    Article  PubMed  Google Scholar 

  31. Torella D, Ellison GM, Karakikes I et al. Resident cardiac stem cells. Cell Mol Life Sci 2007; 64:661–673.

    Article  PubMed  CAS  Google Scholar 

  32. Yoon J, Choi SC, Park CY et al. Bone marrow-derived side population cells are capable of functional cardiomyogenic differentiation. Mol Cells 2008; 25:216–223.

    PubMed  CAS  Google Scholar 

  33. Yoon YS, Wecker A, Heyd L et al. Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction. J Clin Invest 2005; 115:326–338.

    PubMed  CAS  Google Scholar 

  34. Mouquet F, Pfister O, Jain M et al Restoration of cardiac progenitor cells after myocardial infarction by self-proliferation and selective homing of bone marrow-derived stem cells. Circ Res 2005; 97: 1090–1092.

    Article  PubMed  CAS  Google Scholar 

  35. Zhou B, Ma Q, Rajagopal S et al. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 2008; 454:109–113.

    Article  PubMed  CAS  Google Scholar 

  36. Ott HC, Matthiesen TS, Goh SK et al. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 2008; 14:213–221.

    Article  PubMed  CAS  Google Scholar 

  37. Takahashi K, Tanabe K, Ohnuki M et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131:861–872.

    Article  PubMed  CAS  Google Scholar 

  38. Yu J, Vodyanik MA, Smuga-Otto K et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318:1917–1920.

    Article  PubMed  CAS  Google Scholar 

  39. Kim JB, Zaehres H, Wu G et al. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 2008; 454:646–650.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier García-Sancho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Sánchez, A., Schimmang, T., García-Sancho, J. (2012). Cell and Tissue Therapy in Regenerative Medicine. In: López-Larrea, C., López-Vázquez, A., Suárez-Álvarez, B. (eds) Stem Cell Transplantation. Advances in Experimental Medicine and Biology, vol 741. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2098-9_7

Download citation

Publish with us

Policies and ethics