Advertisement

Advances in Stem Cell Therapy

  • Silvia Pérez López
  • Jesús Otero HernándezEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 741)

Abstract

Since the beginning of stem cell biology, considerable effort has been focused in the translation of scientific insights into new therapies. Cell-based assays represent a new strategy for organ and tissue repair in several pathologies. Moreover, alternative treatment strategies are urgently needed due to donor organ shortage that costs many lives every year and results in lifelong immunosuppression. At the moment, only the use of hematopoietic stem cells is considered as the standard for the treatment of malignant and genetic bone marrow disorders, being all other stem cell applications highly experimental. The present chapter tries to summarize some ongoing approaches of stem cell regenerative medicine and also introduces recent findings from published studies and trials conducted in various tissues such as skeletal muscle, liver and lung.

Keywords

Stem Cell Spinal Cord Injury Amyotrophic Lateral Sclerosis Stem Cell Transplantation Stress Urinary Incontinence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lindvall O, Kokaia Z. Stem cells in human neurodegenerative disorders—time for clinical translation? J Clin Invest 2010; 120:29–40.PubMedCrossRefGoogle Scholar
  2. 2.
    ISSCR Task Force for the Clinical Translation of Stem Cells. Guidelines for the Clinical Translation of Stem Cells. Available in http://isscr.org.Google Scholar
  3. 3.
    Lindvall O, Björklund A. Cell therapy in Parkinson’s disease. NeuroRx 2004; 1:382–393.PubMedCrossRefGoogle Scholar
  4. 4.
    Piccini P, Brooks DJ, Björklund A et al. Dopamine release from nigral transplants visualized in vivo in a Parkinson’s patient. Nat Neurosci 1999; 2:1137–1140.PubMedCrossRefGoogle Scholar
  5. 5.
    Olanow CW, Goetz CG, Kordower JH et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann Neurol 2003; 54:403–414.PubMedCrossRefGoogle Scholar
  6. 6.
    Freed CR, Greene PE, Breeze RE et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 2001; 344:710–719.PubMedCrossRefGoogle Scholar
  7. 7.
    Hagell P, Piccini P, Björklund A et al. Dyskinesias following neural transplantation in Parkinson’s disease. Nat Neurosci 2002; 5:627–628.PubMedGoogle Scholar
  8. 8.
    Cho MS, Lee YE, Kim JY et al. Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci USA 2008; 105:3392–3397.PubMedCrossRefGoogle Scholar
  9. 9.
    Dezawa M, Kanno H, Hoshino M et al. Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest 2004; 113:1701–1710.PubMedGoogle Scholar
  10. 10.
    Jain KK. Cell therapy for CNS trauma. Mol Biotechnol 2009; 42:367–376.PubMedCrossRefGoogle Scholar
  11. 11.
    Kim SU, de Vellis J. Stem cell-based cell therapy in neurological diseases: a review. J Neurosci Res 2009; 87:2183–2200.PubMedCrossRefGoogle Scholar
  12. 12.
    Louro J, Pearse DD. Stem and progenitor cell therapies: recent progress for spinal cord injury repair. Neurol Res 2008; 30:5–16.PubMedCrossRefGoogle Scholar
  13. 13.
    Geffner LF, Santacruz P, Izurieta M et al. Administration of autologous bone marrow stem cells into spinal cord injury patients via multiple routes is safe and improves their quality of life: comprehensive case studies. Cell Transplant 2008; 17:1277–1293.PubMedCrossRefGoogle Scholar
  14. 14.
    Kumar AA, Kumar SR, Narayanan R et al. Autologous bone marrow derived mononuclear cell therapy for spinal cord injury: a phase I/II clinical safety and primary efficacy data. Exp Clin Transplant 2009; 7:241–248.PubMedGoogle Scholar
  15. 15.
    Lee H, Shamy GA, Elkabetz Y et al. Directed differentiation and transplantation of human embryonic stem cell-derived motoneurons. Stem Cells 2007; 25:1931–1939.PubMedCrossRefGoogle Scholar
  16. 16.
    Jordan PM, Ojeda LD, Thonhoff JR et al. Generation of spinal motor neurons from human fetal brain-derived neural stem cells: role of basic fibroblast growth factor. J Neurosci Res 2009; 87:318–332.PubMedCrossRefGoogle Scholar
  17. 17.
    Appel SH, Engelhardt JI, Henkel JS et al. Hematopoietic stem cell transplantation in patients with sporadic amyotrophic lateral sclerosis. Neurology. 2008; 71:1326–1334.PubMedCrossRefGoogle Scholar
  18. 18.
    Mazzini L, Mareschi K, Ferrero I et al. Stem cell treatment in amyotrophic lateral sclerosis. J Neurol Sci 2008; 265:78–83.PubMedCrossRefGoogle Scholar
  19. 19.
    Mazzini L, Ferrero I, Luparello V et al. Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: a phase I clinical trial. Exp Neurol 2010; 223:229–237.PubMedCrossRefGoogle Scholar
  20. 20.
    Deda H, Inci MC, Kürekçi AE et al. Treatment of amyotrophic lateral sclerosis patients by autologous bone marrow-derived hematopoietic stem cell transplantation: a 1-year follow-up. Cytotherapy 2009; 11:18–25.PubMedCrossRefGoogle Scholar
  21. 21.
    Li B, Yamamori H, Tatebayashi Y et al. Failure of neuronal maturation in Alzheimer disease dentate gyrus. J Neuropathol Exp Neurol 2008; 67:78–84.PubMedCrossRefGoogle Scholar
  22. 22.
    Tuszynski MH, U HS, Amaral DG et al. Nerve growth factor infusion in primate brain reduces lesion-induced cholinergic neuronal degeneration. J Neurosci 1990; 10:3604–3614.PubMedGoogle Scholar
  23. 23.
    Tuszynski MH, Thal L, Pay M et al. A phase I clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med 2005; 11:551–555.PubMedCrossRefGoogle Scholar
  24. 24.
    Kondziolka D, Wechsler L, Goldstein S et al. Transplantation of cultured human neuronal cells for patients with stroke. Neurology 2000; 55:565–569.PubMedGoogle Scholar
  25. 25.
    Kondziolka D, Steinberg GK, Wechsler L et al. Neurotransplantation for patients with subcortical motor stroke: a phase 2 randomized trial. J Neurosurg 2005; 103:38–45.PubMedCrossRefGoogle Scholar
  26. 26.
    Bang OY, Lee JS, Lee PH et al. Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol 2005; 57:874–882.PubMedCrossRefGoogle Scholar
  27. 27.
    Mauro A. Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 1961; 9:493–495.PubMedCrossRefGoogle Scholar
  28. 28.
    Law PK, Bertorini TE, Goodwin TG et al. Dystrophin production induced by myoblast transfer therapy in Duchenne muscular dystrophy. Lancet 1990; 336:114–115.PubMedCrossRefGoogle Scholar
  29. 29.
    Tedesco FS, Dellavalle A, Diaz-Manera J et al. Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells. J Clin Invest 2010; 120:11–19.PubMedCrossRefGoogle Scholar
  30. 30.
    Cossu G, Sampaolesi M. New therapies for Duchenne muscular dystrophy: challenges, prospects and clinical trials. Trends Mol Med 2007; 13:520–526.PubMedCrossRefGoogle Scholar
  31. 31.
    Fan Y, Maley M, Beilharz M et al. Rapid death of injected myoblasts in myoblast transfer therapy. Muscle Nerve 1996; 19:853–860.PubMedCrossRefGoogle Scholar
  32. 32.
    Skuk D, Goulet M, Tremblay JP. Use of repeating dispensers to increase the efficiency of the intramuscular myogenic cell injection procedure. Cell Transplant 2006; 15:659–663.PubMedCrossRefGoogle Scholar
  33. 33.
    Torrente Y, Belicchi M, Marchesi C et al. Autologous transplantation of muscle-derived CD133 + stem cells in Duchenne muscle patients. Cell Transplant 2007; 16:563–577.PubMedGoogle Scholar
  34. 34.
    Carr LK, Steele D, Steele S et al. 1-year follow-up of autologous muscle-derived stem cell injection pilot study to treat stress urinary incontinence. Int Urogynecol J Pelvic Floor Dysfunct 2008; 19:881–883.PubMedCrossRefGoogle Scholar
  35. 35.
    Strasser H, Marksteiner R, Margreiter E et al. Transurethral ultrasonography-guided injection of adult autologous stem cells versus transurethral endoscopic injection of collagen in treatment of urinary incontinence. World J Urol 2007; 25:385–392.PubMedCrossRefGoogle Scholar
  36. 36.
    Mitterberger M, Pinggera GM, Marksteiner R et al. Adult stem cell therapy of female stress urinary incontinence. Eur Urol 2008; 53:169–175.PubMedCrossRefGoogle Scholar
  37. 37.
    Wang G, Bunnell BA, Painter RG et al. Adult stem cells from bone marrow stroma differentiate into airway epithelial cells: potential therapy for cystic fibrosis. Proc Natl Acad Sci U S A 2005; 102:186–191.PubMedCrossRefGoogle Scholar
  38. 38.
    Kim CF, Jackson EL, Woolfenden AE et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 2005; 121:823–835.PubMedCrossRefGoogle Scholar
  39. 39.
    Zhao YD, Courtman DW, Deng Y et al. Rescue of monocrotaline-induced pulmonary arterial hypertension using bone marrow-derived endothelial-like progenitor cells: efficacy of combined cell and eNOS gene therapy in established disease. Circ Res 2005; 96:442–450.PubMedCrossRefGoogle Scholar
  40. 40.
    Takahashi M, Nakamura T, Toba T et al. Transplantation of endothelial progenitor cells into the lung to alleviate pulmonary hypertension in dogs. Tissue Eng 2004; 10:771–779.PubMedCrossRefGoogle Scholar
  41. 41.
    Wang XX, Zhang FR, Shang YP et al. Transplantation of autologous endothelial progenitor cells may be beneficial in patients with idiopathic pulmonary arterial hypertension: a pilot randomized controlled trial. J Am Coll Cardiol 2007; 49:1566–1571.PubMedCrossRefGoogle Scholar
  42. 42.
    Sell S. Heterogeneity and plasticity of hepatocyte lineage cells. Hepatology 2001; 33:738–750.PubMedCrossRefGoogle Scholar
  43. 43.
    Dhawan A, Mitry RR, Hughes RD. Hepatocyte transplantation for liver-based metabolic disorders. J Inherit Metab Dis 2006; 29:431–435.PubMedCrossRefGoogle Scholar
  44. 44.
    Oh SH, Hatch HM, Petersen BE. Hepatic oval’ stem’ cell in liver regeneration. Semin Cell Dev Biol 2002; 13:405–409.PubMedCrossRefGoogle Scholar
  45. 45.
    Terrace JD, Hay DC, Samuel K et al. Side population cells in developing human liver are primarily haematopoietic progenitor cells. Exp Cell Res 2009; 315:2141–2153.PubMedCrossRefGoogle Scholar
  46. 46.
    Lagasse E, Connors H, Al-Dhalimy M et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 2000; 6:1229–1234.PubMedCrossRefGoogle Scholar
  47. 47.
    Houlihan DD, Newsome PN. Critical review of clinical trials of bone marrow stem cells in liver disease. Gastroenterology 2008; 135:438–450.PubMedCrossRefGoogle Scholar
  48. 48.
    Banas A, Teratani T, Yamamoto Y et al. Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology 2007; 46:219–228.PubMedCrossRefGoogle Scholar
  49. 49.
    Asahina K, Teramoto K, Teraoka H. Embryonic stem cells: hepatic differentiation and regenerative medicine for the treatment of liver disease. Curr Stem Cell Res Ther 2006; 1:139–156.PubMedCrossRefGoogle Scholar
  50. 50.
    Kharaziha P, Hellström PM, Noorinayer B et al. Improvement of liver function in liver cirrhosis patients after autologous mesenchymal stem cell injection: a phase I–II clinical trial. Eur J Gastroenterol Hepatol 2009; 21:1199–1205.PubMedCrossRefGoogle Scholar
  51. 51.
    Lyra AC, Soares MB, da Silva LF et al. Feasibility and safety of autologous bone marrow mononuclear cell transplantation in patients with advanced chronic liver disease. World J Gastroenterol 2007; 13:1067–1073.PubMedGoogle Scholar
  52. 52.
    Lyra AC, Soares MB, da Silva LF et al. Infusion of autologous bone marrow mononuclear cells through hepatic artery results in a short-term improvement of liver function in patients with chronic liver disease: a pilot randomized controlled study. Eur J Gastroenterol Hepatol 2010; 22:33–42.PubMedCrossRefGoogle Scholar
  53. 53.
    Levicar N, Pai M, Habib NA et al. Long-term clinical results of autologous infusion of mobilized adult bone marrow derived CD34+ cells in patients with chronic liver disease. Cell Prolif 2008; 41 Suppl 1:115–125.PubMedGoogle Scholar
  54. 54.
    Yannaki E, Anagnostopoulos A, Kapetanos D et al. Lasting amelioration in the clinical course of decompensated alcoholic cirrhosis with boost infusions of mobilized peripheral blood stem cells. Exp Hematol 2006; 34:1583–1587.PubMedCrossRefGoogle Scholar
  55. 55.
    Gerlach JC, Zeilinger K, Patzer II JF. Bioartificial liver systems: why, what, whither? Regen Med 2008; 3:575–595.PubMedCrossRefGoogle Scholar
  56. 56.
    McKenzie TJ, Lillegard JB, Nyberg SL. Artificial and bioartificial liver support. Semin Liver Dis 2008; 28(2):210–217.PubMedCrossRefGoogle Scholar
  57. 57.
    Beltrami AP, Urbanek K, Kajstura J et al. Evidence that human cardiac myocytes divide alter myocardial infarction. N Engl J Med 2001; 344:1750–1757.PubMedCrossRefGoogle Scholar
  58. 58.
    Bergmann O, Bhardwaj RD, Bernard S et al. Evidence for cardiomyocyte renewal in humans. Science 2009; 324:47–48.CrossRefGoogle Scholar
  59. 59.
    Rumyantsev PP. Interrelations of the proliferation and differentiation processes during cardiac myogenesis and regeneration. Int Rev Cytol 1977; 51:186–273.PubMedGoogle Scholar
  60. 60.
    Soonpaa MH, Field LJ. Survey of studies examining mammalian cardiomyocyte DNA synthesis. Circ Res 1998; 8315–8326.Google Scholar
  61. 61.
    Taylor DA, Robertson MJ. The basics of cell therapy to treat cardiovascular disease: one cell does not fit all. Rev Esp Cardiol 2009; 62:1032–1044.PubMedCrossRefGoogle Scholar
  62. 62.
    Smith RR, Barile L, Cho HC et al. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 2007; 115:896–908.PubMedCrossRefGoogle Scholar
  63. 63.
    Werner N, Kosiol S, Schiegl T et al. Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 2005; 353:999–1007.PubMedCrossRefGoogle Scholar
  64. 64.
    Pittenger MF, Mackay AM, Beck SC et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284:143–147.PubMedCrossRefGoogle Scholar
  65. 65.
    Abdel-Latif A, Bolli R, Tleyjeh IM et al. Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch Intern Med 2007; 167:989–997.PubMedCrossRefGoogle Scholar
  66. 66.
    Hristov M, Heussen N, Schober A et al. Intracoronary infusion of autologous bone marrow cells and left ventricular function after acute myocardial infarction: a meta-analysis. J Cell Mol Med 2006; 10:727–733.PubMedCrossRefGoogle Scholar
  67. 67.
    Lipinski MJ, Biondi-Zoccai GG, Abbate A et al. Impact of intracoronary cell therapy on left ventricular function in the setting of acute myocardial infarction: a collaborative systematic review and meta-analysis of controlled clinical trials. J Am Coll Cardiol 2007; 50:1761–1767.PubMedCrossRefGoogle Scholar
  68. 68.
    Lunde K, Solheim S, Aakhus S et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med 2006; 355:1199–1209.PubMedCrossRefGoogle Scholar
  69. 69.
    Orlic D, Kajstura J, Chimenti S et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001; 410:701–705.PubMedCrossRefGoogle Scholar
  70. 70.
    Balsam LB, Wagers AJ, Christensen JL et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 2004; 428:668–673.PubMedCrossRefGoogle Scholar
  71. 71.
    Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 2003; 425:968–973.PubMedCrossRefGoogle Scholar
  72. 72.
    Korf-Klingebiel M, Kempf T, Sauer T et al. Bone marrow cells are a rich source of growth factors and cytokines: implications for cell therapy trials after myocardial infarction. Eur Heart J 2008; 29:2851–2858.PubMedCrossRefGoogle Scholar
  73. 73.
    Petersen JW, Felker GM. Inotropes in the management of acute heart failure. Crit Care Med 2008; 36 (1 Suppl):S106–S111.PubMedCrossRefGoogle Scholar
  74. 74.
    Segers VF, Lee RT. Stem-cell therapy for cardiac disease. Nature 2008; 451:937–942.PubMedCrossRefGoogle Scholar
  75. 75.
    Gussoni E, Pavlath GK, Lanctot AM et al. Normal dystrophin transcripts detected in Duchenne muscular dystrophy patients after myoblast transplantation. Nature 1992; 356:435–438.PubMedCrossRefGoogle Scholar
  76. 76.
    Karpati G, Ajdukovic D, Arnold D et al. Myoblast transfer in Duchenne muscular dystrophy. Ann Neurol 1993; 34:8–17.PubMedCrossRefGoogle Scholar
  77. 77.
    Ito H, Hallauer PL, Hastings KE et al. Prior culture with concanavalin A increases intramuscular migration of transplanted myoblast. Muscle Nerve 1998; 21:291–297.PubMedCrossRefGoogle Scholar
  78. 78.
    Guérette B, Asselin I, Vilquin JT et al. Lymphocyte infiltration following allo-and xenomyoblast transplantation in mdx mice. Muscle Nerve 1995; 18:39–51.PubMedCrossRefGoogle Scholar
  79. 79.
    Kocher AA, Schuster MD, Szabolcs MJ et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 2001; 7:430–436.PubMedCrossRefGoogle Scholar
  80. 80.
    Kinnaird T, Stabile E, Burnett MS et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 2004; 109:1543–1549.PubMedCrossRefGoogle Scholar
  81. 81.
    Ott HC, Matthiesen TS, Goh SK et al. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 2008; 14:213–221.PubMedCrossRefGoogle Scholar
  82. 82.
    Taylor, DA. From stem cells and cadaveric matrix to engineered organs. Curr Opin Biotechnol 2009; 20:598–605.PubMedCrossRefGoogle Scholar
  83. 83.
    Schächinger V, Erbs S, Elsässer A et al. Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial. Eur Heart J 2006; 27:2775–2783.PubMedCrossRefGoogle Scholar
  84. 84.
    Menasché P, Alfieri O, Janssens S et al. The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation 2008; 117:1189–1200.PubMedCrossRefGoogle Scholar
  85. 85.
    Dib N, Dinsmore J, Lababidi Z et al. One-year follow-up of feasibility and safety of the first US, randomized, controlled study using 3-dimensional guided catheter-based delivery of autologous skeletal myoblasts for ischemic cardiomyopathy (CAuSMIC study). JAC Cardiovasc Interv 2009; 2:9–16.CrossRefGoogle Scholar
  86. 86.
    Tumlin J, Wali R, Williams W et al. Efficacy and safety of renal tubule cell therapy for acute renal failure. J Am Soc Nephrol 2008; 19:1034–1040.PubMedCrossRefGoogle Scholar
  87. 87.
    Voltarelli JC, Couri CE, Stracieri AB et al. Autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. JAMA 2007; 297:1568–1576.PubMedCrossRefGoogle Scholar
  88. 88.
    Hooi JD, Stoffers HE, Knottnerus JA et al. The prognosis of noncritical limb ischaemia: a systematic review of population-based evidence. Br J Gen Pract 1999; 49:49–55.PubMedGoogle Scholar
  89. 89.
    Dormandy J, Heeck L, Vig S. Predicting which patients will develop chronic critical leg ischemia. Semin Vasc Surg 1999; 12:138–141.PubMedGoogle Scholar
  90. 90.
    Guidelines for Percutaneous Transluminal Angioplasty. Standards of practice committee of the society of cardiovascular and interventional radiology. Radiology 1990; 177:619–626.Google Scholar
  91. 91.
    Hiatt WR. Medical treatment of peripheral arterial disease and claudication. N Engl J Med 2001; 344(21):1608–1621.PubMedCrossRefGoogle Scholar
  92. 92.
    Sprengers RW, Lips DJ, Moll FL et al. Progenitor cell therapy in patients with critical limb ischemia without surgical options. Ann Surg 2008; 247:411–420.PubMedCrossRefGoogle Scholar
  93. 93.
    Kawamoto A, Katayama M, Handa N et al. Intramuscular transplantation of G-CSF-mobilized CD34(+) cells in patients with critical limb ischemia: a phase I/IIa, multicenter, single-blinded, dose-escalation clinical trial. Stem Cells 2009; 27:2857–2864.PubMedCrossRefGoogle Scholar
  94. 94.
    Duong Van Huyen JP, Smadja DM, Bruneval P et al. Bone marrow-derived mononuclear cell therapy induces distal angiogenesis after local injection in critical leg ischemia. Mod Pathol 2008; 21:837–846.PubMedCrossRefGoogle Scholar
  95. 95.
    Mizuno H, Zuk PA, Zhu M et al. Myogenic differentiation by human processed lipoaspirate cells. Plast Reconstr Surg 2002; 109:199–209.PubMedCrossRefGoogle Scholar
  96. 96.
    García-Olmo D, García-Arranz M, García LG et al. Autologous stem cell transplantation for treatment of rectovaginal fistula in perianal Crohn’s disease: a new cell-based therapy. Int J Colorectal Dis 2003; 18:451–454.PubMedCrossRefGoogle Scholar
  97. 97.
    García-Olmo D, García-Arranz M, Herreros D et al. A phase I clinical trial of the treatment of Crohn’s fistula by adipose mesenchymal stem cell transplantation. Dis Colon Rectum 2005; 48:1416–1423.PubMedCrossRefGoogle Scholar
  98. 98.
    Byrne DW, Salzberg CA. Major risk factors for pressure ulcers in spinal cord disabled: a literature review. Spinal cord 1996; 345:255–263.CrossRefGoogle Scholar
  99. 99.
    Fathke C, Wilson L, Hutter J et al. Contribution of bone marrow-derived cells to skin: collagen deposition and wound repair. Stem Cells 2004; 225:812–822.CrossRefGoogle Scholar
  100. 100.
    Deng W, Han Q, Liao L et al. Engrafted bone marrow-derived flk-1+ mesenchymal stem cells regenerate skin tissue. Tissue Eng 2005; 111–112:110–119.CrossRefGoogle Scholar
  101. 101.
    Reddy M, Gill SS, Kalkar SR et al. Treatment of pressure ulcers: a systematic review. JAMA 2008; 300:2647–2462.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2012

Authors and Affiliations

  1. 1.Unidad de Coordinación de Trasplantes y Terapia CelularHospital Universitario Central de AsturiasOviedoSpain

Personalised recommendations