Advertisement

Therapeutic Cloning and Cellular Reprogramming

  • Ramon M. Rodriguez
  • Pablo J. Ross
  • Jose B. CibelliEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 741)

Abstract

Embryonic stem cells are capable of differentiating into any cell-type present in an adult organism, and constitute a renewable source of tissue for regenerative therapies. The transplant of allogenic stem cells is challenging due to the risk of immune rejection. Nevertheless, somatic cell reprogramming techniques allow the generation of isogenic embryonic stem cells, genetically identical to the patient. In this chapter we will discuss the cellular reprogramming techniques in the context of regenerative therapy and the biological and technical barriers that they will need to overcome before clinical use.

Keywords

Embryonic Stem Cell Pluripotent Stem Cell Human Embryonic Stem Cell Gene Expression Programme Nuclear Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Briggs R, King TJ. Nuclear transplantation studies on the early gastrula (Rana pipiens). I. Nuclei of presumptive endoderm. Dev Biol 1960; 2:252–270.PubMedCrossRefGoogle Scholar
  2. 2.
    Gurdon JB. Adult frogs derived from the nuclei of single somatic cells. Dev Biol 1962; 4:256–273.PubMedCrossRefGoogle Scholar
  3. 3.
    Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292(5819):154–156.PubMedCrossRefGoogle Scholar
  4. 4.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282(5391):1145–1147.PubMedCrossRefGoogle Scholar
  5. 5.
    Nakajima FK, Tokunaga, Nakatsuji N. Human leukocyte antigen matching estimations in a hypothetical bank of human embryonic stem cell lines in the Japanese population for use in cell transplantation therapy. Stem Cells 2007; 25(4):983–985.PubMedCrossRefGoogle Scholar
  6. 6.
    Taylor CJ, Bolton EM, Pocock S et al. Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet 2005; 366(9502):2019–2025.PubMedCrossRefGoogle Scholar
  7. 7.
    Drukker M, Katz G, Urbach A et al. Characterization of the expression of MHC proteins in human embryonic stem cells. Proc Natl Acad Sci USA 2002; 99(15):9864–9869.PubMedCrossRefGoogle Scholar
  8. 8.
    Mammolenti M, Gajavelli S, Tsoulfas P et al. Absence of major histocompatibility complex class I on neural stem cells does not permit natural killer cell killing and prevents recognition by alloreactive cytotoxic T-lymphocytes in vitro. Stem Cells 2004; 22(6):1101–1110.PubMedCrossRefGoogle Scholar
  9. 9.
    Kofidis T, deBruin JL, Tanaka M et al. They are not stealthy in the heart: embryonic stem cells trigger cell infiltration, humoral and T-lymphocyte-based host immune response. Eur J Cardiothorac Surg 2005; 28(3):461–466.PubMedCrossRefGoogle Scholar
  10. 10.
    Swijnenburg RJ, Tanaka M, Vogel H et al. Embryonic stem cell immunogenicity increases upon differentiation after transplantation into ischemic myocardium. Circulation 2005; 112(Suppl 9):I166–I172.Google Scholar
  11. 11.
    Tabar V, Tomishima M, Panagiotakos G et al. Therapeutic cloning in individual parkinsonian mice. Nat Med 2008; 14(4):379–381.PubMedCrossRefGoogle Scholar
  12. 12.
    Goodell MA. Stem-cell “plasticity”: befuddled by the muddle. Curr Opin Hematol 2003; 10(3):208–213.PubMedCrossRefGoogle Scholar
  13. 13.
    Raff M. Adult stem cell plasticity: fact or artifact? Annu Rev Cell Dev Biol 2003; 19:1–22.PubMedCrossRefGoogle Scholar
  14. 14.
    Wagers AJ, Weissman IL. Plasticity of adult stem cells. Cell 2004; 116(5):639–648.PubMedCrossRefGoogle Scholar
  15. 15.
    Surani MA, Barton SC, Norris ML. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 1984; 308(5959):548–550.PubMedCrossRefGoogle Scholar
  16. 16.
    Allen ND, Barton SC, Hilton K et al. A functional analysis of imprinting in parthenogenetic embryonic stem cells. Development 1994; 120(6):1473–1482.PubMedGoogle Scholar
  17. 17.
    Gurdon JB. Nuclear transplantation in eggs and oocytes. J Cell Sci Suppl 1986; 4:287–318.PubMedGoogle Scholar
  18. 18.
    Stojkovic M, Stojkovic P, Leary C et al. Derivation of a human blastocyst after heterologous nuclear transfer to donated oocytes. Reprod Biomed Online 2005; 11(2):226–231.PubMedCrossRefGoogle Scholar
  19. 19.
    French AJ, Adams CA, Anderson LS et al. Development of human cloned blastocysts following somatic cell nuclear transfer with adult fibroblasts. Stem Cells 2008; 26(2):485–493.PubMedCrossRefGoogle Scholar
  20. 20.
    Morgan HD, Santos F, Green K et al. Epigenetic reprogramming in mammals. Hum Mol Genet 2005; 14 Spec No 1:R47–R58.PubMedCrossRefGoogle Scholar
  21. 21.
    Wakayama S, Cummins JM, Wakayama T. Nuclear reprogramming to produce cloned mice and embryonic stem cells from somatic cells. Reprod Biomed Online 2008; 16(4):545–552.PubMedCrossRefGoogle Scholar
  22. 22.
    Wakayama S, Jakt ML, Suzuki M et al. Equivalency of nuclear transfer-derived embryonic stem cells to those derived from fertilized mouse blastocysts. Stem Cells 2006; 24(9):2023–2033.PubMedCrossRefGoogle Scholar
  23. 23.
    Takagi N, Yoshida MA, Sugawara O et al. Reversal of X-inactivation in female mouse somatic cells hybridized with murine teratocarcinoma stem cells in vitro. Cell 1983; 34(3):1053–1062.PubMedCrossRefGoogle Scholar
  24. 24.
    Tada M, Takahama Y, Abe K et al. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol 2001; 11(19):1553–1558.PubMedCrossRefGoogle Scholar
  25. 25.
    Tada M, Tada T, Lefebvre et al. Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. EMBO J 1997; 16(21):6510–6520.PubMedCrossRefGoogle Scholar
  26. 26.
    Boyer LA, Plath K, Zeitlinger J et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 2006; 441(7091):349–353.PubMedCrossRefGoogle Scholar
  27. 27.
    Dejosez M, Krumenacker JS, Zitur LJ et al. Ronin is essential for embryogenesis and the pluripotency of mouse embryonic stem cells. Cell 2008; 133(7):1162–1174.PubMedCrossRefGoogle Scholar
  28. 28.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4):663–676.PubMedCrossRefGoogle Scholar
  29. 29.
    Maherali N, Sridharan R, Xie W et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 2007; 1(1):55–70.PubMedCrossRefGoogle Scholar
  30. 30.
    Yu J, Vodyanik MA, Smuga-Otto K et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318(5858):1917–1920.PubMedCrossRefGoogle Scholar
  31. 31.
    Meissner A, Wernig M, Jaenisch R. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol 2007; 25(10):1177–1181.PubMedCrossRefGoogle Scholar
  32. 32.
    Okita K, Hong H, Takahashi K et al. Generation of mouse-induced pluripotent stem cells with plasmid vectors. Nat Protoc 2008; 5(3):418–428.CrossRefGoogle Scholar
  33. 33.
    Soldner F, Hockemeyer D, Beard C et al. Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 2009; 136(5):964–977.PubMedCrossRefGoogle Scholar
  34. 34.
    Woltjen K, Michael IP, Mohseni P et al. Piggybac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 2009; 458(7239):766–770.PubMedCrossRefGoogle Scholar
  35. 35.
    Zhou H, Wu S, Joo JY et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 2009; 4(5):381–384.PubMedCrossRefGoogle Scholar
  36. 36.
    Shi Y, Do JT, Desponts C et al. A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell 2008; 2(6):525–528.PubMedCrossRefGoogle Scholar
  37. 37.
    Ichida JK, Blanchard J, Lam K et al. A small-molecule inhibitor of tgf-beta signaling replaces Sox2 in reprogramming by inducing nanog. Cell Stem Cell 5(5):491–503.Google Scholar
  38. 38.
    Li Y, Zhang Q, Yin X et al. Generation of iPSCs from mouse fibroblast with a single gene, Oct4, and small molecules. Cell Res 2010.Google Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2012

Authors and Affiliations

  • Ramon M. Rodriguez
    • 1
  • Pablo J. Ross
    • 2
  • Jose B. Cibelli
    • 3
    • 4
    • 5
    Email author
  1. 1.Cancer Epigenetics Laboratory, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), HUCAUniversidad de OviedoOviedoSpain
  2. 2.Department of Animal ScienceUniversity of California-DavisDavisUSA
  3. 3.Cellular Reprogramming Laboratory, Department of Animal ScienceMichigan State UniversityEast LansingUSA
  4. 4.Department of PhysiologyMichigan State UniversityEast LansingUSA
  5. 5.Andalusian Cell Therapy and Regenerative Medicine ProgrammeAndalusiaSpain

Personalised recommendations