Epigenetics of Embryonic Stem Cells

  • Vincenzo Calvanese
  • Mario F. FragaEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 741)


Understanding the molecular mechanisms involved in the control of cell differentiation during embryonic development is currently one of the main objectives of developmental biology. This knowledge will provide a basis for the development of new strategies in the field of regenerative medicine, one of the most promising weapons to fight many human diseases. Cell differentiation during embryonic development is controlled primarily by epigenetic factors, that is, mechanisms involved in the regulation of chromatin structure and gene expression. Here we describe the best known epigenetic modifications, and pathways, mainly focused on DNA methylation and histone modifications, and try to depict the state of art in our knowledge about epigenetic regulation of embryonic stem cell maintenance and differentiation.


Embryonic Stem Cell Stem Cell Transplantation Human Embryonic Stem Cell Inner Cell Mass Primitive Streak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Waddington C. The epigenotype. Endeavour 1942; 1:18–20.Google Scholar
  2. 2.
    Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 2007; 447:425–432.PubMedCrossRefGoogle Scholar
  3. 3.
    Oudet P, Gross-Bellard M, Chambon P. Electron microscopic and biochemical evidence that chromatin structure is a repeating unit. Cell 1975; 4:281–300.PubMedCrossRefGoogle Scholar
  4. 4.
    Khorasanizadeh S. The nucleosome: from genomic organization to genomic regulation. Cell 2004; 116: 259–272.PubMedCrossRefGoogle Scholar
  5. 5.
    Jenuwein T, Allis CD. Translating the histone code. Science 2001; 293:1074–1080.PubMedCrossRefGoogle Scholar
  6. 6.
    Kouzarides T. Chromatin modifications and their function. Cell 2007; 128:693–705.PubMedCrossRefGoogle Scholar
  7. 7.
    Shogren-Knaak M, Ishii H, Sun JM et al. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 2006; 311:844–847.PubMedCrossRefGoogle Scholar
  8. 8.
    Mujtaba S, Zeng L, Zhou MM. Structure and acetyl-lysine recognition of the bromodomain. Oncogene 2007; 26:5521–5527.PubMedCrossRefGoogle Scholar
  9. 9.
    De Ruijter AJM, Van Gennip AH, Caron HN et al. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 2003; 370:737–749.PubMedCrossRefGoogle Scholar
  10. 10.
    Michan S, Sinclair D. Sirtuins in mammals: insights into their biological function. Biochem J 2007; 404:1–13.PubMedCrossRefGoogle Scholar
  11. 11.
    Robyr D, Suka Y, Xenarios I et al. Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases. Cell 2002; 109:437–446.PubMedCrossRefGoogle Scholar
  12. 12.
    Blander G, Guarente L. The Sir2 family of protein deacetylases. 2004; 73:417–435.Google Scholar
  13. 13.
    Saunders LR, Verdin E. Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene 2007; 26:5489–5504.PubMedCrossRefGoogle Scholar
  14. 14.
    Ahn SH, Cheung WL, Hsu JY et al. Sterile 20 kinase phosphorylates histone H2B at serine 10 during hydrogen peroxide-induced apoptosis in S. cerevisiae. Cell 2005; 120:25–36.PubMedCrossRefGoogle Scholar
  15. 15.
    Winter S, Simboeck E, Fischle W et al. 14-3-3 proteins recognize a histone code at histone H3 and are required for transcriptional activation. EMBO J 2008; 27:88–99.PubMedCrossRefGoogle Scholar
  16. 16.
    Soloaga A, Thomson S, Wiggin GR et al. MSK2 and MSK1 mediate the mitogen-and stress-induced phosphorylation of histone H3 and HMG-14. EMBO J 2003; 22:2788–2797.PubMedCrossRefGoogle Scholar
  17. 17.
    Anest V, Hanson JL, Cogswell PC et al. A nucleosomal function for IkappaB kinase-alpha in NF-kappaB-dependent gene expression. Nature 2003; 423:659–663.PubMedCrossRefGoogle Scholar
  18. 18.
    Metzger E, Yin N, Wissmann M et al. Phosphorylation of histone H3 at threonine 11 establishes a novel chromatin mark for transcriptional regulation. Nat Cell Biol 2008; 10:53–60.PubMedCrossRefGoogle Scholar
  19. 19.
    Bedford MT. Arginine methylation at a glance. J Cell Sci 2007; 120:4243–4246.PubMedCrossRefGoogle Scholar
  20. 20.
    Schurter BT, Koh SS, Chen D et al. Methylation of histone H3 by coactivator-associated arginine methyltransferase 1. Biochemistry 2001; 40:5747–5756.PubMedCrossRefGoogle Scholar
  21. 21.
    Strahl BD, Briggs SD, Brame CJ et al. Methylation of histone H4 at arginine 3 occurs in vivo and is mediated by the nuclear receptor coactivator PRMT1. Curr Biol 2001; 11:996–1000.PubMedCrossRefGoogle Scholar
  22. 22.
    Wolf SS. The protein arginine methyltransferase family: an update about function, new perspectives and the physiological role in humans. Cell Mol Life Sci 2009; 66:2109–2121.PubMedCrossRefGoogle Scholar
  23. 23.
    Min J, Feng Q, Li Z et al. Structure of the catalytic domain of human Dot1L, a non-SET domain nucleosomal histone methyltransferase. Cell 2003; 112:711–723.PubMedCrossRefGoogle Scholar
  24. 24.
    Martin C, Zhang Y. The diverse functions of histone lysine methylation. Nature Rev Mol Cell Biol 2005; 6:838–849.CrossRefGoogle Scholar
  25. 25.
    Santos-Rosa H, Schneider R, Bannister AJ et al. Active genes are tri-methylated at K4 of histone H3. Nature 2002; 419:407–411.PubMedCrossRefGoogle Scholar
  26. 26.
    Barski A, Cuddapah S, Cui K et al. High-resolution profiling of histone methylations in the human genome. Cell 2007; 129:823–837.PubMedCrossRefGoogle Scholar
  27. 27.
    Guenther MG, Jenner RG, Chevalier B et al. Global and Hox-specific roles for the MLL1 methyltransferase. Proc Natl Acad Sci USA 2005; 102:8603–8608.PubMedCrossRefGoogle Scholar
  28. 28.
    Kouskouti A, Talianidis I. Histone modifications defining active genes persist after transcriptional and mitotic in activation. EMBO J 2005; 24:347–357.PubMedCrossRefGoogle Scholar
  29. 29.
    Steger DJ, Lefterova MI, Ying L et al. DOT1L/KMT4 recruitment and H3K79 methylation are ubiquitously coupled with gene transcription in mammalian cells. Mol Cell Biol 2008; 28:2825–2839.PubMedCrossRefGoogle Scholar
  30. 30.
    Cao R, Zhang Y. The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr Opin Genet Dev 2004; 14:155–164.PubMedCrossRefGoogle Scholar
  31. 31.
    Kerppola TK. Polycomb group complexes—many combinations, many functions. Trends Cell Biol 2009; 19:692–704.PubMedCrossRefGoogle Scholar
  32. 32.
    Boyer LA, Plath K, Zeitlinger J et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 2006; 441:349–353.PubMedCrossRefGoogle Scholar
  33. 33.
    Lee TI, Jenner RG, Boyer LA et al. Control of developmental regulators by polycomb in human embryonic stem cells. Cell 2006; 125:301–313.PubMedCrossRefGoogle Scholar
  34. 34.
    Dellino GI, Schwartz YB, Farkas G et al. Polycomb silencing blocks transcription initiation. Mol Cell 2004; 13:887–893.PubMedCrossRefGoogle Scholar
  35. 35.
    Kirmizis A, Bartley SM, Kuzmichev A et al. Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27. Genes Dev 2004; 18:1592–1605.PubMedCrossRefGoogle Scholar
  36. 36.
    Daujat S, Zeissler U, Waldmann T et al. HP1 binds specifically to Lys26-methylated histone H1.4, whereas simultaneous Ser27 phosphorylation blocks HP1 binding. J Biol Chem 2005; 280:38090–38095.PubMedCrossRefGoogle Scholar
  37. 37.
    Viré E, Brenner C, Deplus R et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature 2006; 439:871–874.PubMedCrossRefGoogle Scholar
  38. 38.
    Xiao B, Jing C, Kelly G et al. Specificity and mechanism of the histone methyltransferase Pr-Set7. Genes Dev 2005; 19:1444–1454.PubMedCrossRefGoogle Scholar
  39. 39.
    Cloos PAC, Christensen J, Agger K et al. Erasing the methyl mark: histone demethylases at the center of cellular differentiation and disease. Genes Dev 2008; 22:1115–1140.PubMedCrossRefGoogle Scholar
  40. 40.
    Takeuchi T, Watanabe Y, Takano-Shimizu T et al. Roles of jumonji and jumonji family genes in chromatin regulation and development. Dev Dyn 2006; 235:2449–2459.PubMedCrossRefGoogle Scholar
  41. 41.
    Wang H, Wang L, Erdjument-Bromage H et al. Role of histone H2A ubiquitination in Polycomb silencing. Nature 2004; 431:873–878.PubMedCrossRefGoogle Scholar
  42. 42.
    Zhu B, Zheng Y, Pham AD et al. Monoubiquitination of human histone H2B: the factors involved and their roles in HOX gene regulation. Mol Cell 2005; 20:601–611.PubMedCrossRefGoogle Scholar
  43. 43.
    Nathan D, Ingvarsdottir K, Sterner DE et al. Histone sumoylation is a negative regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifications. Genes Dev 2006; 20:966–976.PubMedCrossRefGoogle Scholar
  44. 44.
    Hassa PO, Haenni SS, Elser M et al. Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol Mol Biol Rev 2006; 70:789–829.PubMedCrossRefGoogle Scholar
  45. 45.
    Nelson CJ, Santos-Rosa H, Kouzarides T. Proline isomerization of histone H3 regulates lysine methylation and gene expression. Cell 2006; 126:905–916.PubMedCrossRefGoogle Scholar
  46. 46.
    Fischle W, Wang Y, Allis CD. Histone and chromatin cross-talk. Curr Opin Cell Biol 2003; 15:172–183.PubMedCrossRefGoogle Scholar
  47. 47.
    Fischle W, Tseng BS, Dormann HL et al. Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 2005; 438:1116–1122.PubMedCrossRefGoogle Scholar
  48. 48.
    Clements A, Poux AN, Lo WS et al. Structural basis for histone and phosphohistone binding by the GCN5 histone acetyltransferase. Mol Cell 2003; 12:461–473.PubMedCrossRefGoogle Scholar
  49. 49.
    Briggs SD, Bryk M, Strahl BD et al. Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae. Genes Dev 2001; 15: 3286–3295.PubMedCrossRefGoogle Scholar
  50. 50.
    Henikoff S, McKittrick E, Ahmad K. Epigenetics, histone H3 variants, and the inheritance of chromatin states. Cold Spring Harb Symp Quant Biol 2004; 69:235–243.PubMedCrossRefGoogle Scholar
  51. 51.
    Mito Y, Henikoff JG, Henikoff S. Genome-scale profiling of histone H3.3 replacement patterns. Nat Genet 2005; 37:1090–1097.PubMedCrossRefGoogle Scholar
  52. 52.
    Albert I, Mavrich TN, Tomsho LP et al. Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. Nature 2007; 446:572–576.PubMedCrossRefGoogle Scholar
  53. 53.
    Creyghton MP, Markoulaki S, Levine SS et al. H2AZ is enriched at polycomb complex target genes in ES cells and is necessary for lineage commitment. Cell 2008; 135:649–661.PubMedCrossRefGoogle Scholar
  54. 54.
    van Attikum H, Gasser SM. The histone code at DNA breaks: a guide to repair? Nat Rev Mol Cell Biol 2005; 6:757–765.PubMedCrossRefGoogle Scholar
  55. 55.
    Costanzi C, Pehrson JR. Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals. Nature 1998; 393:599–601.PubMedCrossRefGoogle Scholar
  56. 56.
    Buschbeck M, Uribesalgo I, Wibowo I et al. The histone variant macroH2A is an epigenetic regulator of key developmental genes. Nat Struct Mol Biol 2009; 16:1074–1079.PubMedCrossRefGoogle Scholar
  57. 57.
    Chadwick BP, Willard HF. Chromatin of the Barr body: histone and nonhistone proteins associated with or excluded from the inactive X chromosome. Hum Mol Genet 2003; 12:2167–2178.PubMedCrossRefGoogle Scholar
  58. 58.
    Hogan C, Varga-Weisz P. The regulation of ATP-dependent nucleosome remodelling factors. Mutat Res 2007; 618:41–51.PubMedGoogle Scholar
  59. 59.
    Kassabov SR, Henry NM, Zofall M et al. High-resolution mapping of changes in histone-DNA contacts of nucleosomes remodeled by ISW2. Mol Cell Biol 2002; 22:7524–7534.PubMedCrossRefGoogle Scholar
  60. 60.
    Sims RJ 3rd, Chen CF, Santos-Rosa H et al. Human but not yeast CHD1 binds directly and selectively to histone H3 methylated at lysine 4 via its tandem chromodomains. J Biol Chem 2005; 280:41789–41792.PubMedCrossRefGoogle Scholar
  61. 61.
    Calvanese V, Horrillo A, Hmadcha A et al. Cancer genes hypermethylated in human embryonic stem cells. PLoS ONE 2008; 3:e3294.PubMedCrossRefGoogle Scholar
  62. 62.
    Yoder JA, Soman NS, Verdine GL et al. DNA (cytosine-5)-methyltransferases in mouse cells and tissues. Studies with a mechanism-based probe. J Mol Biol 1997; 270:385–395.PubMedCrossRefGoogle Scholar
  63. 63.
    Heard E, Disteche CM. Dosage compensation in mammals: fine-tuning the expression of the X chromosome. Genes Dev 2006; 20:1848–1867.PubMedCrossRefGoogle Scholar
  64. 64.
    Chuang LS, Ian HI, Koh TW et al. Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science 1997; 277:1996–2000.PubMedCrossRefGoogle Scholar
  65. 65.
    Pradhan S, Bacolla A, Wells RD et al. Recombinant human DNA (cytosine-5) methyltransferase. I. Expression, purification, and comparison of de novo and maintenance methylation. J Biol Chem 1999; 274:33002–33010.PubMedCrossRefGoogle Scholar
  66. 66.
    Beard C, Li E, Jaenisch R. Loss of methylation activates Xist in somatic but not in embryonic cells. Genes Dev 1995; 9:2325–2334.PubMedCrossRefGoogle Scholar
  67. 67.
    Okano M, Bell DW, Haber DA et al. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999; 99:247–257.PubMedCrossRefGoogle Scholar
  68. 68.
    Hansen RS, Wijmenga C, Luo P et al. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc Natl Acad Sci USA 1999; 96:14412–14417.PubMedCrossRefGoogle Scholar
  69. 69.
    Jeltsch A, Nellen W, Lyko F. Two substrates are better than one: dual specificities for Dnmt2 methyltransferases. Trends Biochem Sci 2006; 31:306–308.PubMedCrossRefGoogle Scholar
  70. 70.
    Choi Y, Gehring M, Johnson L et al. DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in arabidopsis. Cell 2002; 110:33–42.PubMedCrossRefGoogle Scholar
  71. 71.
    Abdalla H, Yoshizawa Y, Hochi S. Active demethylation of paternal genome in mammalian zygotes. J Reprod Dev 2009; 55:356–360.PubMedCrossRefGoogle Scholar
  72. 72.
    Keshet I, Lieman-Hurwitz J, Cedar H. DNA methylation affects the formation of active chromatin. Cell 1986; 44:535–543.PubMedCrossRefGoogle Scholar
  73. 73.
    Wan M, Lee SS, Zhang X et al. Rett syndrome and beyond: recurrent spontaneous and familial MECP2 mutations at CpG hotspots. Am J Hum Genet 1999; 65:1520–1529.PubMedCrossRefGoogle Scholar
  74. 74.
    Nan X, Ng HH, Johnson CA et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 1998; 393:386–389.PubMedCrossRefGoogle Scholar
  75. 75.
    Ballestar E, Esteller M. The impact of chromatin in human cancer: linking DNA methylation to gene silencing. Carcinogenesis 2002; 23:1103–1109.PubMedCrossRefGoogle Scholar
  76. 76.
    Yoon HG, Chan DW, Reynolds AB et al. N-CoR mediates DNA methylation-dependent repression through a methyl CpG binding protein Kaiso. Mol Cell 2003; 12:723–734.PubMedCrossRefGoogle Scholar
  77. 77.
    Fuks F, Hurd PJ, Wolf D et al. The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. Journal of Biological Chemistry 2003; 278:4035–4040.PubMedCrossRefGoogle Scholar
  78. 78.
    Rountree MR, Bachman KE, Baylin SB. DNMT1 binds HDAC2 and a new corepressor, DMAP1, to form a complex at replication foci. Nat Genet 2000; 25:269–277.PubMedCrossRefGoogle Scholar
  79. 79.
    Barlow P, Owen DA, Graham C. DNA synthesis in the preimplantation mouse embryo. J Embryol Exp Morphol 1972; 27:431–445.PubMedGoogle Scholar
  80. 80.
    Fleming TP. A quantitative analysis of cell allocation to trophectoderm and inner cell mass in the mouse blastocyst. Dev Biol 1987; 119:520–531.PubMedCrossRefGoogle Scholar
  81. 81.
    Lawson KA, Meneses JJ, Pedersen RA. Clonal analysis of epiblast fate during germ layer formation in the mouse embryo. Development 1991; 113:891–911.PubMedGoogle Scholar
  82. 82.
    Scott MP. Vertebrate homeobox gene nomenclature. Cell 1992; 71:551–553.PubMedCrossRefGoogle Scholar
  83. 83.
    Hunt P, Krumlauf R. Hox codes and positional specification in vertebrate embryonic axes. Annu Rev Cell Biol 1992; 8:227–256.PubMedCrossRefGoogle Scholar
  84. 84.
    Gearhart J. New potential for human embryonic stem cells. Science 1998; 282:1061–1062.PubMedCrossRefGoogle Scholar
  85. 85.
    Thomson JA. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282:1145–1147.PubMedCrossRefGoogle Scholar
  86. 86.
    Adewumi O, Aflatoonian B, Ahrlund-Richter L et al. Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat Biotechnol 2007; 25:803–816.PubMedCrossRefGoogle Scholar
  87. 87.
    Moon SY, Park YB, Kim DS et al. Generation, culture, and differentiation of human embryonic stem cells for therapeutic applications. Mol Ther 2006; 13:5–14.PubMedCrossRefGoogle Scholar
  88. 88.
    Yang W, Wei W, Shi C et al. Pluripotin combined with leukemia inhibitory factor greatly promotes the derivation of embryonic stem cell lines from refractory strains. Stem Cells 2009; 27:383–389.PubMedCrossRefGoogle Scholar
  89. 89.
    Takahashi K, Tanabe K, Ohnuki M et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131:861–872.PubMedCrossRefGoogle Scholar
  90. 90.
    Hochedlinger K, Plath K. Epigenetic reprogramming and induced pluripotency. Development 2009; 136:509–523.PubMedCrossRefGoogle Scholar
  91. 91.
    Stadtfeld M, Nagaya M, Utikal J et al. Induced pluripotent stem cells generated without viral integration. Science 2008; 322:945–949.PubMedCrossRefGoogle Scholar
  92. 92.
    Silva J, Barrandon O, Nichols J et al. Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol 2008; 6:e253.PubMedCrossRefGoogle Scholar
  93. 93.
    Zhou H, Wu S, Joo JY et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 2009; 4:381–384.PubMedCrossRefGoogle Scholar
  94. 94.
    Aoi T, Yae K, Nakagawa M et al. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 2008; 321:699–702.PubMedCrossRefGoogle Scholar
  95. 95.
    Stadtfeld M, Brennand K, Hochedlinger K. Reprogramming of pancreatic beta cells into induced pluripotent stem cells. Curr Biol 2008; 18:890–894.PubMedCrossRefGoogle Scholar
  96. 96.
    Boland MJ, Hazen JL, Nazor KL et al. Adult mice generated from induced pluripotent stem cells. Nature 2009; 461:91–94.PubMedCrossRefGoogle Scholar
  97. 97.
    O’Neill LP, VerMilyea MD, Turner BM. Epigenetic characterization of the early embryo with a chromatin immunoprecipitation protocol applicable to small cell populations. Nat Genet 2006; 38:835–841.PubMedCrossRefGoogle Scholar
  98. 98.
    Brustle O, Jones KN, Learish RD et al. Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 1999; 285:754–756.PubMedCrossRefGoogle Scholar
  99. 99.
    McDonald JW, Liu XZ, Qu Y et al. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat Med 1999; 5:1410–1412.PubMedCrossRefGoogle Scholar
  100. 100.
    Dhara SK, Stice SL. Neural differentiation of human embryonic stem cells. J Cell Biochem 2008; 105:633–640.PubMedCrossRefGoogle Scholar
  101. 101.
    Shiba Y, Hauch KD, Laflamme MA. Cardiac applications for human pluripotent stem cells. Curr Pharm Des 2009; 15:2791–2806.PubMedCrossRefGoogle Scholar
  102. 102.
    Blum B, Benvenisty N. The tumorigenicity of human embryonic stem cells. Adv Cancer Res 2008; 100:133–158.PubMedCrossRefGoogle Scholar
  103. 103.
    Grinnemo KH, Sylven C, Hovatta O et al. Immunogenicity of human embryonic stem cells. Cell Tissue Res 2008; 331:67–78.PubMedCrossRefGoogle Scholar
  104. 104.
    Drukker M, Benvenisty N. The immunogenicity of human embryonic stem-derived cells. Trends Biotechnol 2004; 22:136–141.PubMedCrossRefGoogle Scholar
  105. 105.
    Jensen J, Hyllner J, Bjorquist P. Human embryonic stem cell technologies and drug discovery. J Cell Physiol 2009; 219:513–519.PubMedCrossRefGoogle Scholar
  106. 106.
    Hattori N, Imao Y, Nishino K et al. Epigenetic regulation of Nanog gene in embryonic stem and trophoblast stem cells. Genes Cells 2007; 12:387–396.PubMedCrossRefGoogle Scholar
  107. 107.
    Hayashi K, de Sousa Lopes SM, Surani MA. Germ cell specification in mice. Science 2007; 316:394–396.PubMedCrossRefGoogle Scholar
  108. 108.
    Lees-Murdock DJ, Walsh CP. DNA methylation reprogramming in the germ line. Epigenetics 2008; 3:5–13.PubMedCrossRefGoogle Scholar
  109. 109.
    Oswald J, Engemann S, Lane N et al. Active demethylation of the paternal genome in the mouse zygote. Curr Biol 2000; 10:475–478.PubMedCrossRefGoogle Scholar
  110. 110.
    Niehrs C. Active DNA demethylation and DNA repair. Differentiation 2009; 77:1–11.PubMedCrossRefGoogle Scholar
  111. 111.
    Mertineit C, Yoder JA, Taketo T et al. Sex-specific exons control DNA methyltransferase in mammalian germ cells. Development 1998; 125:889–897.PubMedGoogle Scholar
  112. 112.
    Hirasawa R, Sasaki H. Dynamic transition of Dnmt3b expression in mouse pre-and early post-implantation embryos. Gene Expr Patterns 2009; 9:27–30.PubMedCrossRefGoogle Scholar
  113. 113.
    Corry GN, Tanasijevic B, Barry ER et al. Epigenetic regulatory mechanisms during preimplantation development. Birth Defects Res C Embryo Today 2009; 87:297–313.PubMedCrossRefGoogle Scholar
  114. 114.
    Boyer LA, Tong IL, Cole MF et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 2005; 122:947–956.PubMedCrossRefGoogle Scholar
  115. 115.
    Liang J, Wan M, Zhang Y et al. Nanog and Oct4 associate with unique transcriptional repression complexes in embryonic stem cells. Nat Cell Biol 2008; 10:731–739.PubMedCrossRefGoogle Scholar
  116. 116.
    Loh YH, Zhang W, Chen X et al. Jmjd1a and Jmjd2c histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem cells. Genes Dev 2007; 21:2545–2557.PubMedCrossRefGoogle Scholar
  117. 117.
    Meshorer E, Misteli T. Chromatin in pluripotent embryonic stem cells and differentiation. Nat Rev Mol Cell Biol 2006; 7:540–546.PubMedCrossRefGoogle Scholar
  118. 118.
    Gaspar-Maia A, Alajem A, Polesso F et al. Chd1 regulates open chromatin and pluripotency of embryonic stem cells. Nature 2009; 460:863–868.PubMedGoogle Scholar
  119. 119.
    Bernstein BE, Mikkelsen TS, Xie X et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 2006; 125:315–326.PubMedCrossRefGoogle Scholar
  120. 120.
    Agger K, Christensen J, Cloos PA et al. The emerging functions of histone demethylases. Curr Opin Genet Dev 2008; 18:159–168.PubMedCrossRefGoogle Scholar
  121. 121.
    Peng JC, Valouev A, Swigut T et al. Jarid2/Jumonji coordinates control of PRC2 enzymatic activity and target gene occupancy in pluripotent cells. Cell 2009; 139:1290–1302.PubMedCrossRefGoogle Scholar
  122. 122.
    Pasini D, Hansen KH, Christensen J et al. Coordinated regulation of transcriptional repression by the RBP2 H3K4 demethylase and Polycomb-Repressive Complex 2. Genes Dev 2008; 22:1345–1355.PubMedCrossRefGoogle Scholar
  123. 123.
    Torres-Padilla ME, Parfitt DE, Kouzarides T et al. Histone arginine methylation regulates pluripotency in the early mouse embryo. Nature 2007; 445:214–218.PubMedCrossRefGoogle Scholar
  124. 124.
    Wu Q, Bruce AW, Jedrusik A et al. CARM1 is required in embryonic stem cells to maintain pluripotency and resist differentiation. Stem Cells 2009; 27:2637–2645.PubMedCrossRefGoogle Scholar
  125. 125.
    McBurney MW, Yang X, Jardine K et al. The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis. Mol Cell Biol 2003; 23:38–54.PubMedCrossRefGoogle Scholar
  126. 126.
    Vaquero A, Scher M, Lee D et al. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell 2004; 16:93–105.PubMedCrossRefGoogle Scholar
  127. 127.
    Kuzmichev A, Margueron R, Vaquero A et al. Composition and histone substrates of polycomb repressive group complexes change during cellular differentiation. Proc Natl Acad Sci USA 2005; 102:1859–1864.PubMedCrossRefGoogle Scholar
  128. 128.
    Kuzmichev A, Jenuwein T, Tempst P et al. Different Ezh2-containing complexes target methylation of histone H1 or nucleosomal histone H3. Mol Cell 2004; 14:183–193.PubMedCrossRefGoogle Scholar
  129. 129.
    Vaquero A, Scher M, Erdjument-Bromage H et al. SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation. Nature 2007; 450:440–444.PubMedCrossRefGoogle Scholar
  130. 130.
    Bibikova M, Chudin E, Wu B et al. Human embryonic stem cells have a unique epigenetic signature. Genome Res 2006; 16:1075–1083.PubMedCrossRefGoogle Scholar
  131. 131.
    Meissner A, Mikkelsen TS, Gu H et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 2008; 454:766–770.PubMedGoogle Scholar
  132. 132.
    Deng J, Shoemaker R, Xie B et al. Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming. Nat Biotechnol 2009; 27:353–360.PubMedCrossRefGoogle Scholar
  133. 133.
    Weber M, Hellmann I, Stadler MB et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 2007; 39:457–466.PubMedCrossRefGoogle Scholar
  134. 135.
    Mikkelsen TS, Hanna J, Zhang X et al. Dissecting direct reprogramming through integrative genomic analysis. Nature 2008; 454:49–55.PubMedCrossRefGoogle Scholar
  135. 136.
    Doi A, Park IH, Wen B et al. Differential methylation of tissue-and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet 2009; 41:1350–1353.PubMedCrossRefGoogle Scholar
  136. 137.
    Lister R, Pelizzola M, Dowen RH et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 2009; 462:315–322.PubMedCrossRefGoogle Scholar
  137. 138.
    Banerjee S, Bacanamwo M. DNA methyltransferase inhibition induces mouse embryonic stem cell differentiation into endothelial cells. Exp Cell Res 2010; 316:172–180.PubMedCrossRefGoogle Scholar
  138. 139.
    Drukker M, Katz G, Urbach A et al. Characterization of the expression of MHC proteins in human embryonic stem cells. Proc Natl Acad Sci USA 2002; 99:9864–9869.PubMedCrossRefGoogle Scholar
  139. 140.
    Drukker M, Katchman H, Katz G et al. Human embryonic stem cells and their differentiated derivatives are less susceptible to immune rejection than adult cells. Stem Cells 2006; 24:221–229.PubMedCrossRefGoogle Scholar
  140. 141.
    Robertson NJ, Brook FA, Gardner RL et al. Embryonic stem cell-derived tissues are immunogenic but their inherent immune privilege promotes the induction of tolerance. Proc Natl Acad Sci USA 2007; 104:20920–20925.PubMedCrossRefGoogle Scholar
  141. 142.
    Suarez-Alvarez B, Rodriguez RM, Calvanese V et al. Epigenetic mechanisms regulate MHC and antigen processing molecules in human embryonic and induced pluripotent stem cells. PLoS ONE 2010; 5:e10192.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2012

Authors and Affiliations

  1. 1.Department of Immunology and OncologyCentro Nacional de Biotecnología/CSICMadridSpain

Personalised recommendations