Mobilization and Homing of Hematopoietic Stem Cells

  • Beatriz Suárez-Álvarez
  • Antonio López-Vázquez
  • Carlos López-LarreaEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 741)


Hematopoietic stem cells (HSC) are a population of precursor cells that posses the capacity for self-renewal and multilineage differentiation. In the bone marrow (BM), HSCs warrant blood cell homeostasis, but at the same time a stable pool of functional cells must be constantly maintained. For this, HSCs constitute a model in which subpopulations of quiescent and active adult stem cells co-exist in the same tissue, in specific microenvironment called stem-cell “niches.” These microenvironments keep the stem cells at quiescent (osteoblastic niche) for its self-renewal and activate the stem cells (vascular niche) for proliferation and/or injury repair, maintaining a dynamic balance between self-renewal and differentiation. HSC reside in the bone marrow but can be forces into the blood, a process termed mobilization used clinically to harvest large number of cells for transplantation. At the same time, homing to the BM is necessary to optimize cell engraftment. Here, we summarize current understanding of HSC niche characteristics, and the physiological and pathological mechanisms that guide HSC mobilization both within the BM and to distant niches in the periphery. Mobilization and Homing are mirror process depending on an interplay between chemokines, chemokine receptors, intracellular signaling, adhesion moleculas and proteases. The interaction between SDF-1/CXCL12 and its receptor CXCR4 is critical to retain HSCs within the bone marrow. Current mobilization strategies used in clinic, mainly G-CSF cytokine, are well tolerated but often produce suboptimal number of collected HSCs. Novel agents (AMD3100, stem cell factor, GROßT.) are being developed to enhance the mobilization to modify the signaling into the niche and boost the stem cell harvest, increasing the number of HSCs available for the transplant.


Hematopoietic Stem Cell Stem Cell Factor Haematopoietic Stem Cell Stem Cell Mobilization Cell Stem Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Till JE, Mcuclloch EA. A direct measurement of the radiation sensitivity ofnormal mouse bone marrow cells. Radiat Res 1961; 14:213–222.PubMedCrossRefGoogle Scholar
  2. 2.
    Spangrude GJ, Heimfeld S, Weissman IL. Purification and characterization of mouse hematopoietic stem cells. Science 1988; 241(4861):58–62.PubMedCrossRefGoogle Scholar
  3. 3.
    Li L, Xie T. Stem cell niche: structure and function. Annu Rev Cell Dev Biol 2005; 21:605–631. Review.PubMedCrossRefGoogle Scholar
  4. 4.
    Wilson A, Laurenti E, Oser G et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 2008; 12;135(6):1118–1129.PubMedCrossRefGoogle Scholar
  5. 5.
    Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 1978; 4(1–2):7–25.PubMedGoogle Scholar
  6. 6.
    Kiel MJ, Morrison SJ. Uncertainty in the niches that maintain haematopoietic stem cells. Nat Rev Immunol 2008; 8(4):290–301. Review.PubMedCrossRefGoogle Scholar
  7. 7.
    Nilsson SK, Johnston HM, Coverdale JA. Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches. Blood 2001; 97(8):2293–2299.PubMedCrossRefGoogle Scholar
  8. 8.
    Calvi LM, Adams GB, Weibrecht KW et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 2003; 425(6960):841–846.PubMedCrossRefGoogle Scholar
  9. 9.
    Zhang J, Niu C, Ye L et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 2003; 425(6960):836–841.PubMedCrossRefGoogle Scholar
  10. 10.
    Kollet O, Dar A, Shivtiel S et al. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med 2006; 12(6):657–664.PubMedCrossRefGoogle Scholar
  11. 11.
    Kiel MJ, Yilmaz OH, Iwashita T et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 2005; 121(7):1109–1121.PubMedCrossRefGoogle Scholar
  12. 12.
    Sugiyama T, Kohara H, Noda M et al. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 2006; 25(6):977–988.PubMedCrossRefGoogle Scholar
  13. 13.
    Wilson A, Trumpp A. Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 2006; 6(2):93–106. Review.PubMedCrossRefGoogle Scholar
  14. 14.
    Kiel MJ, Radice GL, Morrison SJ. Lack of evidence that hematopoietic stem cells depend on N-cadherin-mediated adhesion to osteoblasts for their maintenance. Cell Stem Cell 2007; 1(2):204–217.PubMedCrossRefGoogle Scholar
  15. 15.
    Kiel MJ, Acar M, Radice GL et al. Hematopoietic stem cells do not depend on N-cadherin to regulate their maintenance. Cell Stem Cell 2009; 4(2):170–179.PubMedCrossRefGoogle Scholar
  16. 16.
    Thoren LA, Liuba K, Bryder D et al. Kit regulates maintenance of quiescent hematopoietic stem cells. J Immunol 2008; 180(4):2045–2053.PubMedGoogle Scholar
  17. 17.
    Miyazawa K, Williams DA, Gotoh A et al. Membrane-bound Steel factor induces more persistent tyrosine kinase activation and longer life span of c-kit gene-encoded protein than its soluble form. Blood 1995; 85(3):641–649.PubMedGoogle Scholar
  18. 18.
    Arai F, Hirao A, Ohmura M et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 2004; 118(2):149–161.PubMedCrossRefGoogle Scholar
  19. 19.
    Ara T, Tokoyoda K, Sugiyama T et al. Long-term hematopoietic stem cells require stromal cell-derived factor-1 for colonizing bone marrow during ontogeny. Immunity 2003; 19(2):257–267.PubMedCrossRefGoogle Scholar
  20. 20.
    Avecilla ST, Hattori K, Heissig B et al. Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Med 2004; 10(1):64–71.PubMedCrossRefGoogle Scholar
  21. 21.
    Kopp HG, Avecilla ST, Hooper AT et al. The bone marrow vascular niche: home of HSC differentiation and mobilization. Physiology 2005; 20:349–356. Review.PubMedCrossRefGoogle Scholar
  22. 22.
    Yoshihara H, Arai F, Hosokawa K et al. Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell 2007; 1(6):685–697.PubMedCrossRefGoogle Scholar
  23. 23.
    Stier S, Ko Y, Forkert R et al. Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J Exp Med 2005; 201(11):1781–1791.PubMedCrossRefGoogle Scholar
  24. 24.
    Cancelas JA, Lee AW, Prabhakar R et al. Rac GTPases differentially integrate signals regulating hematopoietic stem cell localization. Nat Med 2005; 11(8):886–891.PubMedCrossRefGoogle Scholar
  25. 25.
    Williams DA, Zheng Y, Cancelas JA. Rho GTPases and regulation of hematopoietic stem cell localization. Methods Enzymol 2008; 439:365–393. Review.PubMedCrossRefGoogle Scholar
  26. 26.
    Fleming HE, Janzen V, Lo Celso C et al. Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell 2008; 2(3):274–283.PubMedCrossRefGoogle Scholar
  27. 27.
    Nemeth MJ, Bodine DM. Regulation of hematopoiesis and the hematopoietic stem cell niche by Wnt signaling pathways. Cell Res 2007; 17(9):746–758. Review.PubMedCrossRefGoogle Scholar
  28. 28.
    Chadwick N, Nostro MC, Baron M et al. Notch signaling induces apoptosis in primary human CD34-hematopoietic progenitor cells. Stem Cells 2007; 25(1):203–210.PubMedCrossRefGoogle Scholar
  29. 29.
    Jeannet G, Scheller M, Scarpellino L et al. Long-term, multilineage hematopoiesis occurs in the combined absence ofbeta-catenin and gamma-catenin. Blood 2008; 111(1):142–149.PubMedCrossRefGoogle Scholar
  30. 30.
    Maillard I, Koch U, Dumortier A et al. Canonical notch signaling is dispensable for the maintenance of adult hematopoietic stem cells. Cell Stem Cell 2008; 2(4):356–366.PubMedCrossRefGoogle Scholar
  31. 31.
    Trowbridge JJ, Scott MP, Bhatia M. Hedgehog modulates cell cycle regulators in stem cells to control hematopoietic regeneration. Proc Natl Acad Sci U S A 2006; 103(38):14134–14139.PubMedCrossRefGoogle Scholar
  32. 32.
    Larsson J, Blank U, Klintman J et al. Quiescence of hematopoietic stem cells and maintenance of the stem cell pool is not dependent on TGF-beta signaling in vivo. Exp Hematol 2005; 33(5):592–596.PubMedCrossRefGoogle Scholar
  33. 33.
    Utsugisawa T, Moody JL, Aspling M et al. A road map toward defining the role of Smad signaling in hematopoietic stem cells. Stem Cells 2006; 24(4):1128–1136.PubMedCrossRefGoogle Scholar
  34. 34.
    Adams GB, Chabner KT, Alley IR et al. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature 2006; 439(7076):599–603.PubMedCrossRefGoogle Scholar
  35. 35.
    Mendez-Ferrer S, Lucas D, Battista M et al. Haematopoietic stem cell release is regulated by circadian oscillations. Nature 2008; 452(7186):442–447.PubMedCrossRefGoogle Scholar
  36. 36.
    Lucas D, Battista M, Shi PA et al. Mobilized hematopoietic stem cell yield depends on species-specific circadian timing. Cell Stem Cell 2008; 3(4):364–366.PubMedCrossRefGoogle Scholar
  37. 37.
    Ceradini DJ, Kulkarni AR, Callaghan MJ et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 2004; 10(8):858–864PubMedCrossRefGoogle Scholar
  38. 38.
    Valenzuela-Fernandez A, Planchenault T, Baleux F et al. Leukocyte elastase negatively regulates Stromal cell-derived factor-1 (SDF-1)/CXCR4 binding and functions by amino-terminal processing of SDF-1 and CXCR4. J Biol Chem 2002; 277(18):15677–15689.PubMedCrossRefGoogle Scholar
  39. 39.
    Levesque JP, Liu F, Simmons PJ et al. Characterization of hematopoietic progenitor mobilization in protease-deficient mice. Blood 2004; 104(1):65–72.PubMedCrossRefGoogle Scholar
  40. 40.
    Heissig B, Hattori K, Dias S et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 2002; 109(5):625–637.PubMedCrossRefGoogle Scholar
  41. 41.
    Ozüyaman B, Ebner P, Niesler U et al. Nitric oxide differentially regulates proliferation and mobilization of endothelial progenitor cells but not of hematopoietic stem cells. Thromb Haemost 2005; 94(4):770–772.PubMedGoogle Scholar
  42. 42.
    Oh IY, Yoon CH, Hur J et al. Involvement of E-selectin in recruitment of endothelial progenitor cells and angiogenesis in ischemic muscle. Blood 2007; 110(12):3891–3899.PubMedCrossRefGoogle Scholar
  43. 43.
    Tauxe C, Xie X, Joffraud M et al. P-selectin glycoprotein ligand-1 decameric repeats regulate selectin-dependent rolling under flow conditions. J Biol Chem 2008; 283(42):28536–28545.PubMedCrossRefGoogle Scholar
  44. 44.
    Papayannopoulou T, Craddock C, Nakamoto B et al. The VLA4/VCAM-1 adhesion pathway defines contrasting mechanisms of lodgement of transplanted murine hemopoietic progenitors between bone marrow and spleen. Proc Natl Acad Sci U S A 1995; 92(21):9647–9651.PubMedCrossRefGoogle Scholar
  45. 45.
    Peled A, Kollet O, Ponomaryov T et al. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(-) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood 2000; 95(11):3289–3296.PubMedGoogle Scholar
  46. 46.
    McQuibban GA, Butler GS, Gong JH et al. Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J Biol Chem 2001; 276(47):43503–43508.PubMedCrossRefGoogle Scholar
  47. 47.
    Lee S, Jilani SM, Nikolova GV et al. Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J Cell Biol 2005; 169(4):681–691.PubMedCrossRefGoogle Scholar
  48. 48.
    Askari AT, Unzek S, Popovic ZB et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 2003; 362(9385):697–703.PubMedCrossRefGoogle Scholar
  49. 49.
    Ma Q, Jones D, Borghesani PR et al. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4-and SDF-1-deficient mice. Proc Natl Acad Sci U S A 1998; 95(16):9448–9453.PubMedCrossRefGoogle Scholar
  50. 50.
    Peled A, Petit I, Kollet O et al. Dependence of human stem cell engraftment and repopulation of NOD/ SCID mice on CXCR4. Science 1999; 283(5403):845–848.PubMedCrossRefGoogle Scholar
  51. 51.
    Foudi A, Jarrier P, Zhang Y et al. Reduced retention of radioprotective hematopoietic cells within the bone marrow microenvironment in CXCR4-/-chimeric mice. Blood 2006; 107(6):2243–2251.PubMedCrossRefGoogle Scholar
  52. 52.
    Nie Y, Han YC, Zou YR. CXCR4 is required for the quiescence of primitive hematopoietic cells. J Exp Med 2008; 205(4):777–783.PubMedCrossRefGoogle Scholar
  53. 53.
    Grunewald M, Avraham I, Dor Y et al. VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 2006; 124(1):175–189.PubMedCrossRefGoogle Scholar
  54. 54.
    Welte K, Platzer E, Lu L et al. Purification and biochemical characterization of human pluripotent hematopoietic colony stimulating factor. Proc Natl Acad Sci U S A 1985; 82(5):1526–1530.PubMedCrossRefGoogle Scholar
  55. 55.
    Metcalf D, Begley CG, Johnson GR et al. Biologic properties in vitro of a recombinant human granulocyte-macrophage colony stimulating factor. Blood 1986; 67(1):37–45.PubMedGoogle Scholar
  56. 56.
    Lavesque JP, Takamatsu Y, Nilsson SK et al. Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood 2001; 98(5):1289–]ReferencesCrossRefGoogle Scholar
  57. 57.
    Semerad CL, Christopher MJ, Liu F et al. G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood 2005; 106(9):3020–3027.PubMedCrossRefGoogle Scholar
  58. 58.
    Reddy V. Granulocyte colony-stimulating factor mobilization alters dendritic cell cytokine production and initiates Thelper 2 polarization prior to host alloantigen presentation. Blood 2000; 96(7):2635.PubMedGoogle Scholar
  59. 59.
    Boeve S, Strupeck J, Creech S et al. Analysis of remobilization success in patients undergoing autologous stem cell transplants who fail an initial mobilization: risk factors, cytokine use and cost. Bone Marrow Transplant 2004; 33(10):997–1003.PubMedCrossRefGoogle Scholar
  60. 60.
    Gerds A, Fox-Geiman M, Dawravoo K et al. Randomized phase III trial of pegfilgrastim versus filgrastim after autologus peripheral blood stem cell transplantation. Biol Blood Marrow Transplant 2010; 16(5):678–685.PubMedCrossRefGoogle Scholar
  61. 61.
    Stiff PJ, Murgo AJ, Wittes RE et al. Quantification of the peripheral blood colony forming unit-culture rise following chemotherapy. Could leukocytaphereses replace bone marrow for autologous transplantation? Transfusion 1983; 23(6):500–503.PubMedCrossRefGoogle Scholar
  62. 62.
    Koc ON, Gerson SL, Cooper BW et al. Randomized cross-over trial of progenitor-cell mobilization: high-dose cyclophosphamide plus granulocyte colony-stimulating factor (G-CSF) versus granulocyte-macrophage colony-stimulating factor plus G-CSF. J Clin Oncol 2000; 18(9):1824–1830.PubMedGoogle Scholar
  63. 63.
    Tudan C, Willick GE, Chahal S et al. C-terminal cyclization of an SDF-1 small peptide analogue dramatically increases receptor affinity and activation of the CXCR4 receptor. J Med Chem 2002; 45(10):2024–2031.PubMedCrossRefGoogle Scholar
  64. 64.
    Zhong R, Law P, Wong D et al. Small peptide analogs to stromal derived factor-1 enhance chemotactic migration of human and mouse hematopoietic cells. Exp Hematol 2004; 32(5):470–475.PubMedCrossRefGoogle Scholar
  65. 65.
    Li K, Chuen CK, Lee SM et al. Small peptide analogue of SDF-1alpha supports survival of cord blood CD34+ cells in synergy with other cytokines and enhances their ex vivo expansion and engraftment into nonobese diabetic/severe combined immunodeficient mice. Stem Cells 2006; 24(1):55–64.PubMedCrossRefGoogle Scholar
  66. 66.
    Matthys P, Hatse S, Vermeire K et al. AMD3100, a potent and specific antagonist of the stromal cell-derived factor-1 chemokine receptor CXCR4, inhibits autoimmune joint inflammation in IFN-gamma receptor-deficient mice. J Immunol 2001; 167(8):4686–4692.PubMedGoogle Scholar
  67. 67.
    Donzella GA, Schols D, Lin SW et al. AMD3100, a small molecule inhibitor of HIV-1 entry via the CXCR4 coreceptor. Nat Med 1998; 4(1):72–77.PubMedCrossRefGoogle Scholar
  68. 68.
    Liles WC, Broxmeyer HE, Rodger E et al. Mobilization of hematopoietic progenitor cells in healthy volunteers by AMD3100, a CXCR4 antagonist. Blood 2003; 102(8):2728–2730.PubMedCrossRefGoogle Scholar
  69. 69.
    Flomenberg N, Devine SM, Dipersio JF et al. The use of AMD3100 plus G-CSF for autologous hematopoietic progenitor cell mobilization is superior to G-CSF alone. Blood 2005; 106(5):1867–1874.PubMedCrossRefGoogle Scholar
  70. 70.
    Oelschlaegel U, Bornhauser M, Boxberger S et al. Kinetics of CXCR-4 and adhesion molecule expression during autologous stem cell mobilisation with G-CSF plus AMD3100 in patients with multiple myeloma. Ann Hematol 2007; 86(8):569–573.PubMedCrossRefGoogle Scholar
  71. 71.
    Fruehauf S, Seeger T, Maier P et al. The CXCR4 antagonist AMD3100 releases a subset of G-CSF-primed peripheral blood progenitor cells with specific gene expression characteristics. Exp Hematol 2006; 34(8):1052–1059.PubMedCrossRefGoogle Scholar
  72. 72.
    Redjal N, Chan JA, Segal RA et al. CXCR4 inhibition synergizes with cytotoxic chemotherapy in gliomas. Clin Cancer Res 2006; 12(22):6765–6771.PubMedCrossRefGoogle Scholar
  73. 73.
    DiPersio JF, Micallef IN, Stiff PJ et al. Phase III prospective randomized double-blind placebo-controlled trial of plerixafor plus granulocyte colony-stimulating factor compared with placebo plus granulocyte colony-stimulating factor for autologous stem-cell mobilization and transplantation for patients with nonHodgkin’s lymphoma. J Clin Oncol 2009; 27(28):4767–4673.PubMedCrossRefGoogle Scholar
  74. 74.
    Micallef IN, Stiff PJ, DiPersio JF et al. Successful stem cell remobilization using plerixafor (mozobil) plus granulocyte colony-stimulating factor in patients with nonhodgkin lymphoma: results from the plerixafor NHL phase 3 study rescue protocol. Biol Blood Marrow Transplant 2009; 15(12):1578–1586.PubMedCrossRefGoogle Scholar
  75. 75.
    Duarte RF, Shaw BE, Marín P et al. Plerixafor plus granulocyte CSF can mobilize hematopoietic stem cells from multiple myeloma and lymphoma patients failing previous mobilization attempts: EU compassionate use data. Bone Marrow Transplant 2010 Mar 22. [Epub ahead of print]Google Scholar
  76. 76.
    Brave M, Farrell A, Ching Lin S et al. FDA Review Summary: Mozobil in Combination with Granulocyte Colony-Stimulating Factor to Mobilize Hematopoietic Stem Cells to the Peripheral Blood for Collection and Subsequent Autologous Transplantation. Oncology 2010; 78(3–4):282–288.CrossRefGoogle Scholar
  77. 77.
    Dawson MA, Schwarer AP, Muirhead JL et al. Successful mobilization of peripheral blood stem cells using recombinant human stem cell factor in heavily pretreated patients who have failed a previous attempt with a granulocyte colony-stimulating factor-based regimen. Bone Marrow Transplant 2005; 36(5):389–396.PubMedCrossRefGoogle Scholar
  78. 78.
    Pelus LM, Fukuda S. Peripheral blood stem cell mobilization: the CXCR2 ligand GRObeta rapidly mobilizes hematopoietic stem cells with enhanced engraftment properties. Exp Hematol 2006; 34(8):1010–1020. Review.PubMedCrossRefGoogle Scholar
  79. 79.
    Fukuda S, Bian H, King AG et al. The chemokine GRObeta mobilizes early hematopoietic stem cells characterized by enhanced homing and engraftment. Blood 2007; 110(3):860–869.PubMedCrossRefGoogle Scholar
  80. 80.
    Pelus LM, Bian H, King AG et al. Neutrophil-derived MMP-9 mediates synergistic mobilization of hematopoietic stem and progenitor cells by the combination of G-CSF and the chemokines GRObeta/ CXCL2 and GRObetaT/CXCL2delta4. Blood 2004; 103(1):110–119.PubMedCrossRefGoogle Scholar
  81. 81.
    Adams GB, Martin RP, Alley IR et al. Therapeutic targeting of a stem cell niche. Nat Biotechnol 2007; 25(2):238–243.PubMedCrossRefGoogle Scholar
  82. 82.
    Ballen KK, Shpall EJ, Avigan D et al. Phase I trial of parathyroid hormone to facilitate stem cell mobilization. Biol Blood Marrow Transplant 2007; 13(7):838–843.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2012

Authors and Affiliations

  • Beatriz Suárez-Álvarez
    • 1
  • Antonio López-Vázquez
    • 1
  • Carlos López-Larrea
    • 1
    • 2
    Email author
  1. 1.Department of ImmunologyAsturias Central University HospitalOviedoSpain
  2. 2.Fundación Renal “Iñigo Álvarez de Toledo,”MadridSpain

Personalised recommendations