Skip to main content

Biology of Stem Cells: The Role of Microenvironments

  • Chapter
Stem Cell Transplantation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 741))

Abstract

From the discovery of the first line of human embryonic stem cells, thousands of studies have been published concerning adult stem cells and their possible alleged therapeutic potential. However, very little real progress has been made in the application of cell therapy to patients. We can conclude that there remains a great deal for us to learn about the biology of stem cells, and especially, the mechanisms that regulate their differentiation and use under conditions of biosafety. In this chapter, we are going to review some of the mechanisms that seem to control the biology of stem cells, in particular the microenvironments, also called niches, where they house and which exert a strong influence over them. The regulation, survival, proliferation and differentiation of stem cells is ultimately determined by a combination of factors intrinsic to the stem cells themselves and extrinsic signals received from the microenvironment. A better understanding of the cellular components of microenvironments and their cellular and molecular interactions with the other components of the niche, including the stem cells themselves, will be key to make progress in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gonczy P. Mechanisms of asymmetric cell division: flies and worms pave the way. Nat Rev Mol Cell Biol 2008; 9:355–366.

    Article  PubMed  Google Scholar 

  2. Knoblich JA. Mechanisms of asymmetric stem cell division. Cell 2008; 132:583–597.

    Article  PubMed  CAS  Google Scholar 

  3. Morrison SJ, Spradling AC. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life.Cell 2008; 132:598–611.

    Article  PubMed  CAS  Google Scholar 

  4. Fuller MT, Spradling AC. Male and female Drosophila germline stem cells: two versions of immortality. Science 2007; 316:402–404.

    Article  PubMed  CAS  Google Scholar 

  5. Yamashita YM, Fuller MT, Jones DL. Signaling in stem cell niches: lessons from the Drosophila germline. J Cell Sci 2005; 118:665–672.

    Article  PubMed  CAS  Google Scholar 

  6. Xie T, Li L. Stem cells and their niche: an inseparable relationship. Development 2007; 134:2001–2006.

    Article  PubMed  CAS  Google Scholar 

  7. Taupin P. Adult neural stem cells, neurogenic niches, and cellular therapy. Stem Cell Rev 2006; 2:213–219.

    Article  PubMed  Google Scholar 

  8. Lim DA, Huang YC, Alvarez-Buylla A. The adult neural stem cell niche: lessons for future neural cell replacement strategies. Neurosurg Clin N Am 2007; 18:81–92.

    Article  PubMed  Google Scholar 

  9. Pardal R. Understanding our own neural stem cells in situ: can we benefit from them?. Front Biosci 2007; 12:3125–3132.

    Article  PubMed  CAS  Google Scholar 

  10. Shetty AK, Hattiangady B, Shetty GA. Stem/progenitor cell proliferation factors FGF-2, IGF-1, and VEGF exhibit early decline during the course of aging in the hippocampus: role of astrocytes. Glia 2005; 51: 173–186.

    Article  PubMed  Google Scholar 

  11. Alexson TO, Hitoshi S, Coles BL et al. Notch signaling is required to maintain all neural stem cell Populations—irrespective of spatial or temporal niche. Dev Neurosci 2006; 28:34–48.

    Article  PubMed  CAS  Google Scholar 

  12. Mizutani K, Yoon K, Dang L et al. Differential Notch signalling distinguishes neural stem cells from intermediate progenitors. Nature 2007; 449:351–355.

    Article  PubMed  CAS  Google Scholar 

  13. Castelo-Branco G, Arenas E. Function of Wnts in dopaminergic neuron development. Neurodegener Dis 2006; 3:5–11.

    Article  PubMed  CAS  Google Scholar 

  14. Lai K, Kaspar BK, Gage FH et al. Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat Neurosci 2003; 6:21–27.

    Article  PubMed  CAS  Google Scholar 

  15. Palma V, Lim DA, Dahmane N et al. Sonic hedgehog controls stem cell behavior in the postnatal and adult brain. Development 2005; 132:335–344.

    Article  PubMed  CAS  Google Scholar 

  16. Li L, Xie T. Stem cell niche: structure and function. Annu Rev Cell Dev Biol 2005; 21:605–631.

    Article  PubMed  CAS  Google Scholar 

  17. Adams GB, Scadden DT. The hematopoietic stem cell in its place. Nat Immunol 2006; 7:333–337.

    Article  PubMed  CAS  Google Scholar 

  18. Li Z, Li L. Understanding hematopoietic stem-cell microenvironments. Trends Biochem Sci 2006; 31: 589–595.

    Article  PubMed  CAS  Google Scholar 

  19. Wilson A, Trumpp A. Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 2006; 6:93–106.

    Article  PubMed  CAS  Google Scholar 

  20. Kaplan RN, Psaila B, Lyden D. Niche-to-niche migration of bone-marrow-derived cells. Trends Mol Med 2007; 13:72–81.

    Article  PubMed  CAS  Google Scholar 

  21. Kiel MJ, Morrison SJ. Uncertainty in the niches that maintain haematopoietic stem cells. Nat Rev Immunol 2008; 8:290–301.

    Article  PubMed  CAS  Google Scholar 

  22. Scadden DT. Circadian rhythms: stem cells traffic in time. Nature 2008; 452:416–417.

    Article  PubMed  CAS  Google Scholar 

  23. Nagasawa T. New niches for B cells. Nat Immunol 2008; 9:345–346.

    Article  PubMed  CAS  Google Scholar 

  24. Trumpp A, Essers M, Wilson A. Awakering dormant haematopoietic stem cells. Nat Rev Immunol 2010; 10:201–209.

    Article  PubMed  CAS  Google Scholar 

  25. Chan Ch, Chen Ch-Ch, Luppen CA et al. Endochondral ossification is required for haematopoietic stem cell niche formation. Nature 2009; 457:490–495.

    Article  PubMed  CAS  Google Scholar 

  26. Sacchetti B, Funar A, Michienzi S et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a haematopoietic microenvironment. Cell 2007; 131:324–336.

    Article  PubMed  CAS  Google Scholar 

  27. Zapata AG, Torroba M, Vicente A et al. The relevance of cell microenvironments for the appearance of lympho-haemopoietic tissues in primitive vertebrates. Histol Histopathol 1995; 10:761–778.

    PubMed  CAS  Google Scholar 

  28. Katayama Y, Battista M, Kao WM et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 2006; 124:407–421.

    Article  PubMed  CAS  Google Scholar 

  29. Mendez-Ferrer S, Lucas D, Battista M et al. Haematopoietic stem cell release is regulated by circadian oscillations. Nature 2008; 452:442–447.

    Article  PubMed  CAS  Google Scholar 

  30. Chakroborty D, Chowdhury UR, Sarkar Ch et al. Dopamine regulates endothelial progenitor cell mobilization from mouse bone marrow in tumor vascularisation. J Clin Invest 2008; 118:1380–1389.

    Article  PubMed  CAS  Google Scholar 

  31. Klassert TE, Patel SA, Rameshwar P. Tachykinins and neurokinin receptors in bone marrow functions: neural-hematopoietic link. J Recept, Ligand and Channel Res 2010; 3:51–61.

    CAS  Google Scholar 

  32. Zapata AG. Stem cell populations in adult bone marrow: Phenotypes and biological relevance for production of somatic stem cell. In: Simón C, Pellicer A, eds. Stem Cells in Human Reproduction, 2nd edition. London: Informa Healthcare, 2009:177–187.

    Chapter  Google Scholar 

  33. Morikawa S, Mabuchi Y, Kubota Y et al. Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J Exp Med 2009; 206:2483–2496.

    Article  PubMed  CAS  Google Scholar 

  34. Crisan M, Yap S, Casteilla L et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 2008; 3:301–313.

    Article  PubMed  CAS  Google Scholar 

  35. Naveiras O, Nardi V, Wenzel PL et al. Bone marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 2009; 460:259–263.

    Article  PubMed  CAS  Google Scholar 

  36. Chitteti BR, Cheng YH, Poteat B et al. Impact of interactions of cellular components of the bone marrow microenvironment on hematopoietic stem and progenitor cell function. Blood 2010; 115:3239–3248.

    Article  PubMed  CAS  Google Scholar 

  37. Dzierzak E, Speck NA. Of lineage and legacy: the development of mammalian hematopoietic stem cells. Nat Immunol 2008; 9:129–136.

    Article  PubMed  CAS  Google Scholar 

  38. Carlson ME, Conboy IM. Loss of stem cell regenerative capacity within aged niches. Aging Cell 2007; 6:371–382.

    Article  PubMed  CAS  Google Scholar 

  39. Mayack SR, Shadrach JL, Kim FS et al. Systemic signals regulate ageing and rejuvenation of blood stem cell niches. Nature 2010; 483:495–501.

    Article  Google Scholar 

  40. Perry JM, Li L. Disrupting the stem cell niche: good seeds in bad soil. Cell 2007; 129:1045–1047.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agustín G. Zapata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Zapata, A.G., Alfaro, D., García-Ceca, J. (2012). Biology of Stem Cells: The Role of Microenvironments. In: López-Larrea, C., López-Vázquez, A., Suárez-Álvarez, B. (eds) Stem Cell Transplantation. Advances in Experimental Medicine and Biology, vol 741. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2098-9_10

Download citation

Publish with us

Policies and ethics