Bone Repair in Diabetes

Chapter

Abstract

Diabetes is associated with an increased risk of fracture of bone and impaired fracture healing. Wound complications are more serious and the rate of postoperative complications is higher than that in non diabetic subjects. The etiology and pathogenesis of impaired bone repair in human subjects and animal models of type I and type II diabetes are reviewed. In addition the adequacy of bone repair around orthopedic and dental implants is addressed and a role for hyperglycosylation in impaired bone repair in diabetic subjects is discussed.

Keywords

Permeability Brittleness Neuropathy Immobilization Carbonyl 

References

  1. 1.
    Kagel EM, Einhorn TA (1996) Alterations of fracture healing in the diabetic condition. Iowa Orthop J 16:147–152Google Scholar
  2. 2.
    Schindeler A, McDonald MM, Bokko P, Little DG (2008) Bone remodeling during fracture repair. The cellular picture. Semin Cell Dev Biol 19:459–466CrossRefGoogle Scholar
  3. 3.
    Schwartz AV (2003) Diabetes mellitus: does it affect bone? Calcif Tissue Int 73:515–519CrossRefGoogle Scholar
  4. 4.
    Tuominen JT, Impivaara O, Puukka P, Rönnemaa T (1999) Bone mineral density in patients with type 1 and type 2 diabetes. Diabetes Care 22:1196–1200CrossRefGoogle Scholar
  5. 5.
    Macey LR, Kana SM, Jingushi S, Terek RM, Borretos J, Bolander ME (1989) Defects of early fracture-healing in experimental diabetes. J Bone Joint Surg Am 71:722–733Google Scholar
  6. 6.
    Loder R (1988) The influence of diabetes mellitus on the healing of closed fractures. Clin Orthop Relat Res 232:210–216Google Scholar
  7. 7.
    Wray JB, Stunkle E (1965) The effect of experimental diabetes upon the breaking strength of the healing fracture in the rat. J Surg Res 11:479–481CrossRefGoogle Scholar
  8. 8.
    Wukich DK, Kline AJ (2008) The management of ankle fractures in patients with diabetes. J Bone Joint Surg Am 90:1570–1578CrossRefGoogle Scholar
  9. 9.
    McCormack RG, Leith JM (1998) Ankle fractures in diabetics. Complications of surgical management. J Bone Joint Surg Br 80:689–692CrossRefGoogle Scholar
  10. 10.
    Blotter RH, Connolly E, Wasan A, Chapman MW (1999) Acute complications in the operative treatment of isolated ankle fractures in patients with diabetes mellitus. Foot Ankle Int 20:687–694Google Scholar
  11. 11.
    Funk JR, Hale JE, Carmines D, Gooch HL, Hurwitz SR (2000) Biomechanical evaluation of early fracture healing in normal and diabetic rats. J Orthop Res 18:126–132CrossRefGoogle Scholar
  12. 12.
    Gooch HL, Hale JE, Fujioka H, Balian G, Hurwitz SA (2000) Alterations of cartilage and collagen expression during fracture healing in experimental diabetes. Connect Tissue Res 41:81–91CrossRefGoogle Scholar
  13. 13.
    Tyndall WA, Beam HA, Zarro C, O’Connor JP, Lin SS (2003) Decreased platelet derived growth factor expression during fracture healing in diabetic animals. Clin Orthop Relat Res 408:319–330CrossRefGoogle Scholar
  14. 14.
    Herbsman H, Powers JC, Hirschman A, Shaftan GW (1968) Retardation of fracture healing in experimental diabetes. J Surg Res 8:424–431CrossRefGoogle Scholar
  15. 15.
    Beam HA, Parsons JR, Lin SS (2002) The effects of blood glucose control upon fracture healing in the BB Wistar rat with diabetes mellitus. J Orthop Res 20:1210–1216CrossRefGoogle Scholar
  16. 16.
    Harris BH, Powers J, Shaftan GW, Herbsman H (1968) Vascular component of fracture healing in experimental diabetes. Surg Forum 19:450–451Google Scholar
  17. 17.
    Thrailkill KM, Lumpkin CK Jr, Bunn RC, Kemp SF, Fowlkes JL (2005) Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues. Am J Physiol Endocrinol Metab 289:E735–E745CrossRefGoogle Scholar
  18. 18.
    Klöting L, Follak N, Klöting I (2005) Diabetes per se and metabolic state influence gene expression in tissue-dependent manner of BB/OK rats. Diabetes Metab Res Rev 21:281–287CrossRefGoogle Scholar
  19. 19.
    Follak N, Klöting L, Wolf E, Merk H (2004) Delayed remodeling in the early period of fracture healing in spontaneously diabetic BB/OK rats depending on the diabetic metabolic state. Histol Histopathol 19:473–486Google Scholar
  20. 20.
    Gandhi A, Beam HA, O’Conner JP, Parsons JR, Lin SS (2005) The effect of local insulin delivery on diabetic fracture healing. Bone 37:482–490CrossRefGoogle Scholar
  21. 21.
    Wittrant Y, Gorin Y, Woodruff K, Horn D, Abboud HE, Mohan S, Abboud-Werner S (2008) High d(+)glucose concentration inhibits RANKL-induced osteoclastogenesis. Bone 42:1122–1130CrossRefGoogle Scholar
  22. 22.
    Botolin S, McCabe LR (2006) Chronic hyperglycemia modulates osteoblast gene expression through osmotic and non-osmotic pathways. J Cell Biochem 99:411–424CrossRefGoogle Scholar
  23. 23.
    Ogawa N, Yamaguchi T, Yano S, Yamauchi M, Yamamoto M, Sugimoto T (2007) The combination of high glucose and advanced glycation end-products (AGEs) inhibits the mineralization of osteoblastic MC3T3-E1 cells through glucose-induced increase in the receptor for AGEs. Horm Metab Res 39:871–875CrossRefGoogle Scholar
  24. 24.
    Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and anti-oxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84CrossRefGoogle Scholar
  25. 25.
    Park YG, Kim KW, Song KH, Lee JM, Hong JJ, Moon SK, Kim CH (2009) Combinatory responses of proinflammatory cytokines on nitric-oxide mediated function in mouse calvarial osteoblasts. Cell Biol Int 33:92–99CrossRefGoogle Scholar
  26. 26.
    Chen RM, Wu GJ, Chang HC, Chen JT, Chen TF, Lin YL, Chen TL (2005) 2,6-Diisopropylphenol protects osteoblasts from oxidative stress-induced apoptosis through suppression of caspase-3 activation. Ann NY Acad Sci 1042:448–459CrossRefGoogle Scholar
  27. 27.
    Bai XC, Lu D, Bai J, Zheng H, Ke ZY, Li XM, Luo SQ (2004) Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-kappaB. Biochem Biophys Res Commun 314:197–207CrossRefGoogle Scholar
  28. 28.
    Jagger CJ, Lean JM, Davies JT, Chambers TJ (2005) Tumor necrosis factor-alpha mediates osteopenia caused by depletion of antioxidants. Endocrinology 146:113–118CrossRefGoogle Scholar
  29. 29.
    Lean JM, Davies JT, Fuller K, Jagger CJ, Kirstein B, Partington GA, Urry ZL, Chambers TJ (2003) A crucial role for thiol antioxidants in estrogen-deficiency bone loss. J Clin Invest 112:915–923Google Scholar
  30. 30.
    Jin T, The WNT (2008) Signalling pathway and diabetes mellitus. Diabetologia 51:1771–1780CrossRefGoogle Scholar
  31. 31.
    Manolagas SC, Almeida M (2007) Gone with the Wints: beta-catenin, T-cell factor, forkhead box O, and oxidative stress in age-dependent diseases of bone, lipid and glucose metabolism. Mol Endocrinol 21:2605–2614CrossRefGoogle Scholar
  32. 32.
    Hamada Y, Fujii H, Kitazawa R, Yodoi J, Kitazawa S, Fukagawa M (2009) Thioredoxin-1 overexpression in transgenic mice attenuates streptozotocin-induced diabetic osteopenia: a novel role of oxidative stress and therapeutic implications. Bone 44:936–941CrossRefGoogle Scholar
  33. 33.
    Sheweita SA, Khoshhal KI (2007) Calcium metabolism and oxidative stress in bone fractures: role of antioxidants. Curr Drug Metab 8:519–525CrossRefGoogle Scholar
  34. 34.
    Kayal RA, Alblowi J, McKenzie E, Krothapalli N, Silkman L, Gerstenfeld L, Einhorn TA, Graves DT (2009) Diabetes caused the accelerated loss of cartilage during fracture repair wgich is reversed by insulin treatment. Bone 44:357–363CrossRefGoogle Scholar
  35. 35.
    Kayal RA, Tsatsas D, Bauer MA, Allen B, Al-Sebaei MO, Kakar S, Leone CW, Morgan EF, Gerstenfeld LC, Einhorn TA, Graves DT (2007) Diminished bone formation during diabetic fracture healing is related to the premature resorption of cartilage associated with increased osteoclast activity. J Bone Miner Res 22:560–568CrossRefGoogle Scholar
  36. 36.
    Gandhi A, Doumas C, O’Connor JP, Parsons JR, Lin SS (2006) The effects of local plasma rich delivery on diabetic fracture healing. Bone 38:540–546CrossRefGoogle Scholar
  37. 37.
    Al-Zube L, Breitbart EA, O’Connor JP, Parsons JR, Bradica G, Hart CE, Lin SS (2009) Recombinant human platelet-derived growth factor BB (rhPDGF-BB) and beta-tricalcium phosphate/collagen matrix enhance fracture healing in a diabetic rat model. J Orthop Res 27:1074–1081CrossRefGoogle Scholar
  38. 38.
    Ogasawara A, Nakajima A, Nakajima F, Goto K, Yamazaki M (2008) Molecular basis for affected cartilage formation and bone union in fracture healing of the streptozotocin-induced diabetic rat. Bone 43:832–839CrossRefGoogle Scholar
  39. 39.
    Lu H, Kraut D, Gerstenfeld LC, Graves DT (2003) Diabetes interferes with the bone formation by affecting the expression of transcription factors that regulate osteoblast differentiation. Endocrinology 144:345–352Google Scholar
  40. 40.
    de Amorim FP, Ornelas SS, Diniz SF, Batista AC, da Silva TA (2008) Imbalance of RANK, RANKL and OPG expression during tibial fracture repair in diabetic rats. J Mol Histol 39:401–408CrossRefGoogle Scholar
  41. 41.
    Chaudhary SB, Liporace FA, Gandhi A, Donley BG, Pinzur MS, Lin SS (2008) Complications of ankle fracture in patients with diabetes. J Am Acad Orthop Surg 16:159–170Google Scholar
  42. 42.
    Gandhi A, Liporace F, Azad V, Mattie J, Lin SS (2006) Diabetic fracture healing. Foot Ankle Clin 11:805–824CrossRefGoogle Scholar
  43. 43.
    Meding JB, Reddleman K, Keating ME, Klay A, Ritter MA, Faris PM, Berend ME (2003) Total knee replacement in patients with diabetes mellitus. Clin Orthop Relat Res 416:208–216CrossRefGoogle Scholar
  44. 44.
    Bolognesi MP, Marchant MH Jr, Viens MA, Cook C, Pietrobon R, Vail TP (2008) The impact of diabetes on perioperative patient outcomes after total hip and total knee arthroplasty in the United States. J Arthroplasty 23(6 Suppl):92–98CrossRefGoogle Scholar
  45. 45.
    Moon HK, Han CD, Yang IH, Cha BS (2008) Factors affecting outcome after total knee arthroplasty in patients with diabetes mellitus. Yonsei Med J 49:129–137CrossRefGoogle Scholar
  46. 46.
    Papagelopoulos PJ, Idusuyi OB, Wallrichs SL, Morrey BF (1996) Long term outcome and survivorship analysis of primary total knee arthroplasty in patients with diabetes mellitus. Clin Orthop Relat Res 330:124–132CrossRefGoogle Scholar
  47. 47.
    de Morais JA, Trindade-Suedam IK, Pepato MT, Marcantonio E Jr, Wenzel A, Scaf G (2009) Effect of diabetes mellitus and insulin therapy on bone density around osseointegrated dental implants: a digital subtraction radiography study in rats. Clin Oral Implants Res 20:796–801CrossRefGoogle Scholar
  48. 48.
    Mellado-Valero A, Ferrer Garcia C, Herrera Ballester A, Labuaig Rueda C (2007) Effects of diabetes on the osteointegration of dental implants. Med Oral Patol Oral Cir Bucal 12:E38–E43Google Scholar
  49. 49.
    Kwon PT, Rahan SS, Kim DM, Kopman JA, Karimbux NY, Fiorellini JP (2005) Maintenance of osseointegration utilizing insulin therapy in a diabetic rat model. J Periodontol 76:621–626CrossRefGoogle Scholar
  50. 50.
    Siqueira JT, Cavalher-Machado SC, Arana-Chavez VE, Sannomiya P (2003) Bone formation around titanium implants in the rat tibia: role of insulin. Implant Dent 12:242–251CrossRefGoogle Scholar
  51. 51.
    McCracken MS, Aponte-Wesson R, Chavali R, Lemons JE (2006) Bone associated with implants in diabetic and insulin treated rats. Clin Oral Implants Res 17:495–500CrossRefGoogle Scholar
  52. 52.
    McCracken MS, Lemons JE, Rahemtulla F, Prince CW, Feldman D (2000) Bone response to titanium alloy implants placed in diabetic rats. Int J Oral Maxillofac Implants 15:345–354Google Scholar
  53. 53.
    Hasegawa H, Ozawa S, Hashimoto K, Takeichi T, Ogawa T (2008) Type 2 diabetes impairs implant osseointegration capacity in rats. Int J Oral Maxillofac Implants 23:237–246Google Scholar
  54. 54.
    Casap N, Nimri S, Ziv E, Sela J, Samuni Y (2008) Type 2 diabetes has minimal effect on osseointegration of titanium implants in Psammomus obesus. Clin Oral Implants Res 19:458–464CrossRefGoogle Scholar
  55. 55.
    Kotsovilis S, Karoussis IK, Fourmousis I (2006) A comprehensive and critical review of dental implant placement in diabetic animals and patients. Clin Oral Implants Res 17:587–599CrossRefGoogle Scholar
  56. 56.
    Lindhe J, Meyle J (2008) Group D of European workshop on periodontology. Peri-implant diseases: consensus report of the sixth European workshop on periodontology. J Clin Periodontol 35(8 suppl):282–285CrossRefGoogle Scholar
  57. 57.
    Tawil G, Younan R, Azar P, Sleilati G (2008) Conventional and advanced implant treatment in the type II diabetic patient: surgical protocol and long-term clinical results. Int J Oral Maxillofac Implants 23:744–752Google Scholar
  58. 58.
    Meerwaldt R, Links T, Zeebregts C, Tio R, Hillebrands JL, Smit A (2008) The clinical relevance of assessing advanced glycation endproducts accumulation in diabetes. Cardiovasc Diabetol 7:29CrossRefGoogle Scholar
  59. 59.
    Ulrich P, Cerami A (2001) Protein glycation, diabetes, and aging. Recent Prog Horm Res 56:1–21CrossRefGoogle Scholar
  60. 60.
    Gangoiti MV, Cortizo AM, Arnol V, Felice JI, McCarthy AD (2008) Opposing effects of biphosphonates and advanced glycation end-products on osteoblastic cells. Eur J Pharmacol 600:140–147CrossRefGoogle Scholar
  61. 61.
    McCarthy AD, Etcheverry SB, Bruzzone L, Lettieri G, Barrio DA, Cortizo AM (2001) Non-enzymatic glycosylation of a type I collagen matrix: effects on osteoblastic development and oxidative stress. BMC Cell Biol 2:16CrossRefGoogle Scholar
  62. 62.
    McCarthy AD, Etcheverry SB, Bruzzone L, Cortizo AM (1997) Effects of advanced glycation end-products on the proliferation and differentiation of osteoblast-like cells. Mol Cell Biochem 170:43–51CrossRefGoogle Scholar
  63. 63.
    Franke S, Siggelkow H, Wolf G, Hein G (2007) Advanced glycation endproducts influence the mRNA expression of RAGE, RANKL and various osteoblastic genes in human osteoblasts. Arch Physiol Biochem 113:154–161CrossRefGoogle Scholar
  64. 64.
    Cortizo AM, Lettieri MG, Barrio DA, Mercer N, Etcheverry SB, McCarthy AD (2003) Advanced glycation end-products (AGEs) induce concerted changes in the osteoblastic expression of their receptor RAGE and in the activation of extracellular signal-regulated kinases (ERK). Mol Cell Biochem 250:1–10CrossRefGoogle Scholar
  65. 65.
    McCarthy AD, Etcheverry SB, Cortizo AM (1999) Advanced glycation endproduct-specific receptors in rat and mouse osteoblast-like cells: regulation with stages of differentiation. Acta Diabetol 36:45–52CrossRefGoogle Scholar
  66. 66.
    Schurman L, McCarthy AD, Sedlinsky C, Gangoiti MV, Arnol V, Bruzzone L, Cortizo AM (2008) Metformin reverts deleterious effects of advanced glycation end-products (AGEs) on osteoblastic cells. Exp Clin Endocrinol Diabetes 116:333–340CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Hadassah Faculty of Medicine, Department of PathologyHebrew UniversityJerusalemIsrael

Personalised recommendations