Skip to main content

Ultrahigh Hydrostatic Pressure

  • Chapter
  • First Online:

Part of the book series: Food Engineering Series ((FSES))

Abstract

High-pressure processing (HPP) technology has been commercially applied in the production of ceramic materials, carbides, and synthetic quartz for some time but is relatively new to the food industry (Torres JA, Velazquez G (2008) Hydrostatic pressure processing of foods. In: Jun S, Irudayaraj J (eds) Food Processing Operations Modeling: Design and Analysis, pp 173–212. CRC Press, Boca Raton, FL). In this alternative technology of food processing, food items are subjected to elevated pressures (up to about 600 MPa) to achieve microbial inactivation or to alter the food attributes in order to obtain consumer-desired qualities. When foodstuffs are subjected to extremely high pressures, protein and starch are denatured, and enzymes and microorganisms are deactivated in the same way as when heat is applied. Since no thermochemical changes occur, sensory characteristics are not affected and microorganisms are inactivated without causing significant flavor and nutritional changes to foods (Berlin DL, Herson DS, Hicks DT, Hoover DG (1999) Response of pathogenic Vibrio species to high hydrostatic pressure. Appl Environ Microbiol 65: 2776–2780). HPP retains food quality, maintains natural freshness, and extends microbiological shelf life, causing minimal changes in the fresh characteristics of foods by eliminating thermal degradation. As compared with thermal processing, HPP produces foods with better appearance, texture, and nutritive features. It can be conducted at ambient or refrigerated temperatures, thereby eliminating thermally induced cooked off-flavors. This technology is especially beneficial for heat-sensitive products and provides an alternative means of killing bacteria that can cause spoilage or food-borne disease without a loss of sensory quality or nutrients.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amati A, Castellari M, Matricardi L, Arfelli G, Carpi G (1996) Modificazione indotte in mosti d’uva da trattamenti con alte pressioni idrostatische. Ind Bevande 25: 324–328.

    CAS  Google Scholar 

  • Anese M, Nicoli MC, Dallaglio G, Lerici CR (1995) Effect of high pressure treatments on peroxidase and polyphenoloxidase activities. J Food Biochem 18: 285–293.

    Article  CAS  Google Scholar 

  • Asaka M, Aoyama Y, Ritsuko N, Hayashi R (1994 Purification of a latent form of polyphenoloxidase from La France pear fruit and its pressure-activation. Biosci Biotechnol Biochem 58: 1486–1589.

    Article  CAS  Google Scholar 

  • Balogh T, Smout C, Ly Nguyen B, van Loey A, Hendrickx ME (2004) Thermal and high pressure inactivation kinetics of carrot pectinmethylesterase (PME): From model systems to real foods. Innov Food Sci Emerg Technol 5: 429–436.

    Article  CAS  Google Scholar 

  • Bauer BA, Knorr D (2005) The impact of pressure, temperature and treatment time on starches: pressure-induced starch gelatinisation as pressure time temperature indicator for high hydrostatic pressure processing. J Food Eng 68: 329–334.

    Article  Google Scholar 

  • Berlin DL, Herson DS, Hicks DT, Hoover DG (1999) Response of pathogenic Vibrio species to high hydrostatic pressure. Appl Environ Microbiol 65: 2776–2780.

    CAS  Google Scholar 

  • Blaszczak W, Fornal J, Kiseleva VI, Yuryev VP, Sergeev AI, Sadowska J (2007) Effect of high pressure on thermal, structural and osmotic properties of waxy maize and Hylon VII starch blends. Carbohydr Polym 68: 387–396.

    Article  CAS  Google Scholar 

  • Butz P, Edenharder R, Fernández García A, Fister H, Merkel C, Tauscher B (2002) Changes in functional properties of vegetables induced by high pressure treatment. Food Res Int 35: 295–300.

    Article  CAS  Google Scholar 

  • Butz P, Koller D, Tauscher B (1994) Ultra-high pressure processing of onions: chemical and sensory changes. LWT-Food Sci Technol 27: 463–467.

    Article  CAS  Google Scholar 

  • Cano MP, Hernandez A, de Ancos B (1997) High pressure and temperature effects on enzyme inactivation in strawberry and orange products. J Food Sci 62: 85–88.

    Article  CAS  Google Scholar 

  • Castellari M, Matricardi L, Arfelli G, Rovereb P, Amati A (1997) Effects of high pressure processing on polyphenoloxidase enzyme activity of grape musts. Food Chem 60: 647–649.

    Article  CAS  Google Scholar 

  • Castro SM, Saraiva JA, Lopes-Da-Silva JA et al (2008) Effect of thermal blanching and of high pressure treatments on sweet green and red bell pepper fruits (Capsicum annuum L.). Food Chem 107: 1436–1449.

    Article  CAS  Google Scholar 

  • Cheftel JC (1992) Effects of high hydrostatic pressure on food constituents: an overview. In: Balny C, Hayashi R, Heremans K, Masson P (eds) High Pressure and Biotechnology, pp 211–218. John Libbey Eurotext, Montrouge.

    Google Scholar 

  • Cheftel JC (1995) High pressure, microbial inactivation and food preservation. Food Sci Technol Int 1: 75–90.

    Article  Google Scholar 

  • Cheftel JC, Culioli J (1997) Effects of high pressure on meat: a review. Meat Sci 46: 211–236.

    Article  CAS  Google Scholar 

  • Crawford YJ, Murano EA, Olson DG, Shenoy K (1996) Use of high hydrostatic pressure and irradiation to eliminate Clostridium sporogenes in chicken breasts. J Food Prot 59: 711–715.

    Google Scholar 

  • Earnshaw RG (1995) Understanding physical inactivation processes: combined preservation opportunities using heat, ultrasound and pressure. Int J Food Microbiol 28: 197–219.

    Article  CAS  Google Scholar 

  • Elgasim EA, Kennick WH (1980) Effect of pressurization of pre-rigor beef muscles on protein quality. J Food Sci 45: 1122–1124.

    Article  Google Scholar 

  • Farr D (1990) High-pressure technology in the food industry. Trends Food Sci Technol 1: 14–16.

    Article  Google Scholar 

  • Galazka VB, Leward DA (1995) Developments in high pressure food processing. In: Turner A (ed) Food Technology International Europe, pp 123–125. Sterling Publications International, London.

    Google Scholar 

  • Gomes MRA, Ledward DA (1996) Effect of high-pressure treatment on the activity of some polyphenoloxidase. Food Chem 56: 1–5.

    Article  CAS  Google Scholar 

  • Gould GW, Sale AJH (1970) Initiation of germination of bacterial spores by hydrostatic pressure. J Gen Microbiol 60: 355–346.

    Google Scholar 

  • Hayashi R (1995) Advances in high pressure food processing technology in Japan. In: Gaonkar AG (ed) Food Processing: Recent Developments, pp 185–195. Elsevier Science, Amsterdam.

    Google Scholar 

  • Heinz V, Knorr D (2001) Effects of high pressure on spores. In: Hendrickx MEG, Knorr D (eds) Ultra-high Pressure Treatment of Foods, pp 77–113. Kluwer Academic/Plenum Publishers, New York.

    Google Scholar 

  • Hendrickx ME, Ludikhuyze LR, van den Broeck I, Weemaes CA (1998) Effects of high-pressure on enzymes related to food quality. Trends Food Sci Technology 9:197–203.

    Article  CAS  Google Scholar 

  • Heremans K (1982) High pressure effects on proteins and other biomolecules. Annu Rev Biophys Bioeng 11: 1–21.

    Article  CAS  Google Scholar 

  • Heremans K (1995) High-pressure effects on biomolecules. In: Ledward DA, Johnston DE, Earnshaw RG, Hasting APM (eds) High-Pressure Processing of Foods, pp 81–97. Nottingham University Press, Nottingham.

    Google Scholar 

  • Hite BH (1899) The effects of pressure in the preservation of milk. Bull WV Univ Agric Exp Stn Morgantown 58: 15–35.

    Google Scholar 

  • Hite BH, Giddings NJ, Weakly CE (1914) The effects of pressure on certain microorganisms encountered in the preservation of fruits and vegetables. Bull WV Univ Agric Exp Stn Morgantown 146: 1–67.

    Google Scholar 

  • Hoover DG (1993) Pressure effects on biological systems. Food Technol 47 (6): 150–155.

    Google Scholar 

  • Irwe S, Olson I (1994) Reduction of pectinarase activity in orange juice by high pressure treatment. In: Singh RP, Oliveira FAR (eds) Minimal Processing of Foods and Process Optimization, pp 35–42. CRC Press Inc, Boca Raton, FL.

    Google Scholar 

  • Johnston DE (1995) High pressure effects on milk and meat. In: Ledward DA, Johnston DE, Earnshaw RG, Hasting APM (eds) High-Pressure Processing of Foods, pp 99–122. Nottingham University Press, Nottingham.

    Google Scholar 

  • Jolibert F, Tonello C, Sagegh P, Raymond J (1994) Les effets des hautes pressions sur la polyphenol oxydase des fruits. Bios Boissons 251: 27–35.

    Google Scholar 

  • Kalichevsky MT, Knorr D, Lillford PJ (1995) Potential food applications of high-pressure effects on ice-water interactions. Trends Food Sci Technol 6: 253–259.

    Article  CAS  Google Scholar 

  • Knorr D (1994) Hydrostatic pressure treatment of food: microbiology. In: Gould GW (ed) New Methods of Food Preservation, pp 159–175. Blackie Academic and Professional, London.

    Google Scholar 

  • Knorr D (1995) High pressure effects on plant derived foods. In: Ledward DA, Johnston DE, Earnshaw RG, Hasting APM (eds) High-Pressure Processing of Foods, pp 123–136. Nottingham University Press, Nottingham.

    Google Scholar 

  • Knorr D, Heinz V, Buckow R (2006) High pressure application for food biopolymers. Biochim Biophys Acta 1764: 619–631.

    CAS  Google Scholar 

  • Lakshmanan R, Patterson MF, Piggott JR (2005) Effects of high-pressure processing on proteolytic enzymes and proteins in cold-smoked salmon during refrigerated storage. Food Chem 90: 541–548.

    Article  CAS  Google Scholar 

  • Linton M, Patterson MF (2000) High pressure processing of foods for microbiological safety and quality. Acta Microbiol Immunol Hung 47: 175–182.

    Article  CAS  Google Scholar 

  • Ludikhuyze L, Claeys W, Hendrickx ME (2000) Combined pressure-temperature inactivation of alkaline phosphatase in bovine milk: a kinetic study. J Food Sci 65: 155–160.

    Article  CAS  Google Scholar 

  • Ludikhuyze L, Van Loey A, Indrawati, Hendrickx M (2002) High pressure processing of fruits and vegetables. In: Jongen W (ed) Fruit and Vegetable Processing: Improving Quality, pp 346–362. Woodhead Publishing Ltd, Cambridge, UK.

    Chapter  Google Scholar 

  • Macheboeuf MA, Basset J (1934) Die Wirkung sehr hoher Drucke auf Enzyme. Ergeb Enzymforsch 3: 303–308.

    CAS  Google Scholar 

  • Mackey BM, Forestiere K, Isaacs NS (1995) factors affecting the resistance of Listeria monocytogenes to high hydrostatic pressure. Food Biotechnol 9: 1–11.

    Article  CAS  Google Scholar 

  • Mertens B (1995) Hydrostatic pressure treatment of food: equipment and processing. In: Gould GW (ed) New Methods in Food Preservation, pp 135–158. Aspen Publishers Inc, Gaithersburg, MD.

    Chapter  Google Scholar 

  • Messens W, Van Camp J, Huyghbaert A (1997) The use of high pressure to modify the functionality of food proteins. Trends Food Sci Technol 8: 107–112.

    Article  CAS  Google Scholar 

  • Meyer RS, Cooper KL, Knorr D, Lelieveld HLM (2000) High-pressure sterilization of foods. Food Technol 54 (11): 67–72.

    Google Scholar 

  • Mills G, Earnshaw R, Patterson MF (1998) Effects of high hydrostatic pressure on Clostridium sporogenes spores. Lett Appl Microbiol 26: 227–230.

    Article  CAS  Google Scholar 

  • Morild E (1981) The theory of pressure effects on proteins. Adv Protein Chem 35: 93–166.

    Article  Google Scholar 

  • Nakayama A, Yano Y, Kobayashi S, Ishikawa M, Sakai K (1996) Comparison of pressure resistances of spores of six Bacillus strains with their heat resistances. Appl Environ Microbiol 62: 3897–900.

    CAS  Google Scholar 

  • Oey I, Verlinde P, Hendrickx M, van Loey A (2006) Temperature and pressure stability of L-ascorbic acid and/or [6s] 5-methyltetrahydrofolic acid: a kinetic study. Eur Food.

    Google Scholar 

  • Ogawa H, Fukuhisa K, Kubo Y, Fukumoto H (1990) Pressure inactivation of yeast, mould and pectinesterase in satsuma mandarin juice: Effects of juice concentration, pH, and organic acids and comparison with heat sanitation. Agric Biol Chem 5: 1219–1225.

    Article  Google Scholar 

  • Otero L, Ramos AM, de Elvira C, Sanz PD (2007) A model to design high-pressure processes towards a uniform temperature distribution. J Food Eng 78: 1463–1470.

    Article  Google Scholar 

  • Palou E, Hernandez-Salgado C, Lopez-Malo A, Barbosa-Cánovas GV, Swanson BG, Welti J (2000) High pressure-processed guacamole. Innov Food Sci Emerg Technol 1: 69–75.

    Article  Google Scholar 

  • Palou E, Lopez-Malo A, Barbosa-Cánovas GV, Welti-Chanes J, Swanson BG (1999) Polyphenoloxidase activity and color of blanched and high hydrostatic pressure treated banana puree. J Food Sci 64: 42–45.

    Article  CAS  Google Scholar 

  • Papineau AM, Hoover DG, Knorr D, Farkas DF (1991) Antimicrobial effect of water-soluble chitosans with high hydrostatic pressure. Food Biotechnol 5: 45–57.

    Article  CAS  Google Scholar 

  • Patterson MF, Quinn M, Simpson R, Gilmour A (1995) Sensitivity of vegetative pathogens to high hydrostatic pressure treatment in phosphate-buffer saline and foods. J Food Prot 58: 524–529.

    Google Scholar 

  • Pauling L (1964) College Chemistry: An Introductory Textbook of General Chemistry. Freeman and Company, San Francisco, CA.

    Google Scholar 

  • Quaglia RB, Gravina R, Paperi F, Paoletti F (1996) Effect of high pressure treatments on peroxidase activity, ascorbic acid content and texture in green peas. LWT-Food Sci Technol 29: 552–555.

    Article  CAS  Google Scholar 

  • Quiros A, Chichon A, Recio I, Lopez-Fandino R (2007) Analytical, nutritional and clinical methods: the use of high hydrostatic pressure to promote the proteolysis and release of bioactive peptides from ovalbumin. Food Chem 104: 1734–1739.

    Article  CAS  Google Scholar 

  • Rasanayagam V, Balasubramaniam VM, Ting E, Sizer CE, Bush C, Anderson C (2003) Compression heating of selected fatty food materials during high-pressure processing. J Food Sci 68: 254–259.

    Article  CAS  Google Scholar 

  • Rastogi NK, Raghavarao KSMS, Balasubramaniam VM, Niranjan K, Knorr D (2007) Opportunities and challenges in high pressure processing of foods. Crit Rev Food Sci Nutr 47: 69–112.

    Article  CAS  Google Scholar 

  • Reddy NR, Solomon HM, Tetzloff RC, Rhodehamel EJ (2003) Inactivation of Clostridium botulinum type A spores by high-pressure processing at elevated temperatures. J Food Prot 66: 1402–1407.

    CAS  Google Scholar 

  • Reps A, Kolakowski P, Dajnowiec F (1998) The effect of high pressure on microorganisms and enzymes of ripening cheeses. In: Isaacs NS (ed) High Pressure Food Science, Bioscience and Chemistry, pp 265–270. Woodhead Publishing, Cambridge, UK.

    Chapter  Google Scholar 

  • Sale AJH, Gould GW, Hamilton WA (1970) Inactivation of bacterial spores by hydrostatic pressure. J Gen Microbiol 60: 323–334.

    CAS  Google Scholar 

  • Sancho F, Lambert Y, Demazeau G, Largeteau A, Bouvier JM, Narbonne JF (1999) Effect of ultra-high hydrostatic pressure on hydrosoluble vitamins. J Food Eng 39: 247–253.

    Article  Google Scholar 

  • Seyderhelm I, Boguslawski S, Michaelis G, Knorr D (1996) Pressure induced inactivation of selected food enzymes. J Food Sci 61: 308–310.

    Article  CAS  Google Scholar 

  • Sila DN, Smout C, Satara Y, Truong V, van Loey A, Hendrickx ME (2007) Combined thermal and high pressure effect on carrot pectinmethylesterase stability and catalytic activity. J Food Eng 78: 755–764.

    Article  CAS  Google Scholar 

  • Stewart CM, Dunne CP, Sikes A, Hoover DG (2000) Sensitivity of spores of Bacillus subtilis and Clostridium sporogenes PA 3679 to combinations of high hydrostatic pressure and other processing parameters. Innov Food Sci Emerg Technol 1: 49–56.

    Article  CAS  Google Scholar 

  • Stolt M, Oinonen S, Autio K (2000) Effect of high pressure on the physical properties of barley starch. Innov Food Sci Emerg Technol 1: 167–175.

    Article  CAS  Google Scholar 

  • Sun N, Seunghwan L, Kyung BS (2002) Effect of high-pressure treatment on the molecular properties of mushroom polyphenoloxidase. LWT-Food Sci Technol 35: 315–318.

    Article  CAS  Google Scholar 

  • Tamaoka T, Hayashi R (1991) High-pressure effect on Millard reaction. Agric Biol Chem 55: 2071–2074.

    Article  CAS  Google Scholar 

  • Tauscher B (1995) Pasteurization of food by hydrostatic high pressure: chemical aspects. Lebensm-Unters-Forsch 200: 3–13.

    Article  CAS  Google Scholar 

  • Timson WJ, Short AJ (1965) Resistance of microorganisms to hydrostatic pressure. Biotechnol Bioeng 7: 139–59.

    Article  Google Scholar 

  • Toepfl S, Mathys A, Heinz V, Knorr D (2006) Potential of high hydrostatic pressure and pulsed electric fields for energy efficient and environmentally friendly food processing. Food Rev Int 22: 405–423.

    Article  CAS  Google Scholar 

  • Torres JA, Velazquez G (2008) Hydrostatic pressure processing of foods. In: Jun S, Irudayaraj J (eds) Food Processing Operations Modeling: Design and Analysis, pp 173–212. CRC Press, Boca Raton, FL.

    Google Scholar 

  • van den Broeck I, Ludikhuyze LR, van Loey AM, Hendrickx ME (2000) Inactivation of orange pectinesterase by combined high-pressure and temperature treatments: a kinetic study. J Agric Food Chem 48: 1960–1970.

    Article  Google Scholar 

  • Weemaes CA, de Cordt SV, Ludikhuyze LR, van den Broeck I, Hendrickx ME, Tobback PP (1997) Influence of pH, benzoic acid, EDTA, and glutathione on the pressure and/or temperature inactivation kinetics of mushroom polyphenoloxidase. Biotechnol Prog 13: 25–32.

    Article  CAS  Google Scholar 

  • Weemaes CA, Ludikhuyze L, van den Broeck I, Hendrickx ME (1998) High pressure inactivation of polyphenoloxidases. J Food Sci 63: 873–877.

    Article  CAS  Google Scholar 

  • Weemaes CA, Ludikhuyze L, van den Broeck I, Hendrickx ME (1999) Kinetic study of antibrowning agents and pressure inactivation of avocado polyphenoloxidase. J Food Sci 64: 823–827.

    Article  CAS  Google Scholar 

  • Wicker L, Temelli F (1988) Heat inactivation of pectinarase in orange juice pulp. J Food Sci 53: 162–164.

    Article  CAS  Google Scholar 

  • Yemenicioglu A, Ozkan M, Cemeroglu B (1997) Heat inactivation kinetics of apple polyphenoloxidase and activation of its latent form. J Food Sci 62: 508–510.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ortega-Rivas, E. (2012). Ultrahigh Hydrostatic Pressure. In: Non-thermal Food Engineering Operations. Food Engineering Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2038-5_14

Download citation

Publish with us

Policies and ethics