Skip to main content

Double-Channel Homodyne Interferometric Sensor

  • Chapter
  • First Online:
  • 911 Accesses

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

Abstract

The previous chapter was devoted to the millimeter-wave interferometric sensor with homodyne configuration. This sensor was used for displacement measurement and liquid level gauging and achieved a resolution of 50 μm, which is equal to λ0/160, with λ0 being the free-space operating wavelength, and 0.3-mm maximum error.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    FFT spectral estimator is a signal processing based on FFT for generating the frequency spectrum of a signal.

  2. 2.

    Common-mode rejection ratio is a measure of differential amplifier’s ability to reject an undesired signal (noise) that is common to both inverting and non-inverting 180° out-of-phase input terminals.

References

  1. S. Kim, C. Nguyen, A displacement measurement technique using millimeter-wave interferometry. IEEE Trans. Microw Theory Tech. 51(6), 1724–1728 (2003)

    Article  Google Scholar 

  2. K. Itoh, Analysis of the phase unwrapping problem. Appl. Opt. 21(14), 2470 (1982)

    Article  Google Scholar 

  3. D.C. Ghiglia, M.D. Pritt, Two-Dimensional Phase Unwrapping Theory, Algorithms, and Software (John Wiley, New York, 1998). Ch. 1

    MATH  Google Scholar 

  4. A.V. Oppenheim, R.W. Schafer, Digital Signal Processing (Prentice-Hall, Englewood Cliffs, NJ, 1975). Ch.10.6

    MATH  Google Scholar 

  5. F.E. Churchill, G.W. Ogar, B.J. Thompson, The correction of I and Q errors in a coherent processors. IEEE Trans. Aerosp. Electron. Syst AES-17(1), 131–137 (1981)

    Article  Google Scholar 

  6. D.E. Noon, Wide band quadrature error correction (using SVD) for stepped-frequency radar receivers. IEEE Trans. Aerosp. Electron. Syst AES-35(6), 1444–1449 (1999)

    Article  Google Scholar 

  7. R.A. Monzingo, S.P. Au, Evaluation of image response signal power resulting from I-Q channel imbalance. IEEE Trans. Aerosp. Electron. Syst AES-23(2), 285–287 (1987)

    Article  Google Scholar 

  8. H.H. Meinel, Commercial applications of millimeter waves history, present status, and future trends. IEEE Trans. Microw Theory Tech. 43(7), 1639–1653 (1995)

    Article  Google Scholar 

  9. M. Wollitzer, J. Buechler, J.F. Luy, U. Siart, E. Schmidhammer, J. Detlefsen, M. Esslinger, Multifunctional radar sensor for automotive application. IEEE Trans. Microw Theory Tech. 46(5), 701–708 (1998)

    Article  Google Scholar 

  10. R.H. Rasshofer, E.M. Biebl, Advanced millimeterwave speed sensing system based on low-cost active integrated antennas. IEEE MTT-S Int. Microw Symp. Dig. 1, 285–288 (1999)

    Google Scholar 

  11. I. Gresham, N. Jain, T. Budka, A. Alexanian, N. Kinayman, B. Ziegner, S. Brown, P. Staecker, A compact manufacturable 76-77-GHz radar module for commercial ACC applications. IEEE Trans. Microw Theory Tech. 49(1), 44–58 (2001)

    Article  Google Scholar 

  12. N. Weber, S. Moedl, M. Hackner, A novel signal processing approach for microwave Doppler speed sensing. IEEE MTT-S Int. Microw Symp. Dig. 3, 2233–2235 (2002)

    Google Scholar 

  13. F. Xiao, F.M. Ghannouchi, T. Yakabe, Application of a six-port wave-correlator for a very low velocity measurement using the Doppler effect. IEEE Trans. Instrum. Meas 52(2), 297–301 (2003)

    Article  Google Scholar 

  14. W.M. Waters, B.R. Jarret, Bandpass signal sampling and coherent detection. IEEE Trans. Aerosp. Electron. Syst AES-18, 731–736 (1982)

    Article  Google Scholar 

  15. D.W. Rice, K.H. Wu, Quadrature sampling with high dynamic range. IEEE Trans. Aerosp. Electron. Syst AES-18, 736–739 (1982)

    Article  Google Scholar 

  16. V. Considine, Digital complex sampling. Electron Lett 19(16), 608–609 (1983)

    Article  Google Scholar 

  17. C.R. Rader, A simple method for sampling in-phase and quadrature composition. IEEE Trans, Aerosp. Electron. Syst. 20(6), 821–824 (1984)

    Article  Google Scholar 

  18. H. Liu, A. Ghafoor, P.H. Stockmann, A new quadruture sampling and processing approach. IEEE Trans. Aerosp. Electron. Syst AES-25(5), 733–748 (1989)

    Article  Google Scholar 

  19. A. Papoulis, Probability, Random Variables, and Stochastic Processes (McGraw-Hill, New York, 1984)

    MATH  Google Scholar 

  20. G.A.F. Seber, A.J. Lee, Linear Regression Analysis (John Wiley, New York, 2003)

    MATH  Google Scholar 

  21. S.A. Tretter, Estimating the frequency of a noisy sinusoid by linear regression. IEEE Trans. Inform. Theory IT-31, 832–835 (1985)

    Article  Google Scholar 

  22. C.D. Cain, A. Yardim, E.T. Katsaros, Performance of an FIR filter-based spectral centroid tracker for Doppler determination. IEEE Int Symp Circ Syst 5, 2455–2458 (1991)

    Article  Google Scholar 

  23. G.H. Golub, C.F. Van Loan, Matrix Computation (The John Hopkins University, Baltimore, MD, 1989). Ch. 8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cam Nguyen .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nguyen, C., Kim, S. (2012). Double-Channel Homodyne Interferometric Sensor. In: Theory, Analysis and Design of RF Interferometric Sensors. SpringerBriefs in Physics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2023-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-2023-1_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-2022-4

  • Online ISBN: 978-1-4614-2023-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics