Skip to main content

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

  • 920 Accesses

Abstract

In general, interferometry is a scientific technique, as it literally implies, to interfere or correlate two or more signals to form a physically observable measure, like a fringe pattern in optical interferometry or electrical signals in most radio interferometry, from which useful information can be inferred. The history of interferometry dates back to 1887 when American physicist A. A. Michelson first demonstrated optical interferometer experimentally to measure the speed of light, which later became the foundation of Einstein’s Theory of Relativity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The RF range here is loosely defined as including all the frequencies from 1 MHz to 300 GHz (millimeter waves).

References

  1. A. Kolodziejczyk, M. Sypek, A.A. Michelson-life and achievements. Proc SPIE 1121, 2–14 (1989)

    Google Scholar 

  2. J.M. Schmitt, Optical coherence tomography (OCT): a review. IEEE J. Slect. Top. Quant. Electron. 5(4), 1205–1215 (1999)

    Article  Google Scholar 

  3. M.M. Gualini, W.A. Kha, W. Sixt, H. Steinbichler, Recent advancements of optical interferometry applied to medicine, in Multi Topic Conference, 2001. IEEE INMIC 2001. Technology for the 21st Century. Proceedings. IEEE International, 28–30 Dec 2001, pp. 205–211

    Google Scholar 

  4. W.H. Steel, Another look at the theory of interferometer. Proc SPIE 1121, 18–23 (1989)

    Google Scholar 

  5. W.H. Steel, Interferometry (Cambridege University, London, 1983)

    Google Scholar 

  6. R.J. King, Microwave Homodyne Systems (Peter Peregrinus, London, 1978)

    Google Scholar 

  7. R. Zoughi, Microwave Non-Destructive Testing and Evaluation (Kluwer Academic, Boston, 2000)

    Google Scholar 

  8. M.A. Heald, C.B. Wharton, Plasma Diagnostics with Microwaves (John Wiley, New York, 1965)

    Google Scholar 

  9. A. Stelzer, C.G. Diskus, K. Lubke, H.W. Thim, Microwave position sensor with submillimeter accuracy. IEEE Trans. Microw Theory Tech. 47(12), 2621–2624 (1999)

    Article  Google Scholar 

  10. A. Benlarbi-Delai, D. Matton, Y. Leroy, Short-range two-dimension positioning by microwave cellular telemetry. IEEE Trans. Microw Theory Tech. 42(11), 2056–2062 (1994)

    Article  Google Scholar 

  11. A. Benlarbi, J.C. Van De Velde, D. Matton, Y. Leroy, Position, velocity profile measurement of a moving body by microwave interferometry. IEEE Trans. Instrum. Meas 39(4), 632–636 (1990)

    Article  Google Scholar 

  12. P.E. Engler, S.S. Reisman, C.Y. Ho, A microwave interferometer as a non contacting cardio-pulmonary monitor, in 1988 Bioengineering Conference, Proceedings of the 1988 Fourteenth Annual Northeast, Durham, 10–11 Mar 1988, pp. 62–65

    Google Scholar 

  13. A.R. Thompson, J.M. Moran, G.W. Swenson Jr., Interferometry and Synthesis in Radio Astronomy (John Wiley, New York, 1986)

    Google Scholar 

  14. W. B. Doriese, A 145-GHz Interferometer for Measuring the Anisotropy of the Cosmic Microwave Background, Ph.D. Dissertation, Physics Department. Princeton University, Princeton, 2002

    Google Scholar 

  15. G. Franceschetti, R. Lanari, Synthetic Aperture Radar Processing (CRC press, New York, 1999). Ch. 4

    Google Scholar 

  16. W.F. Feltz, H.B. Howell, R.O. Knuteson, H.M. Woolf, H.E. Revercomb, Near continuous profiling of temperature, moisture, and atmospheric stability using the atmospheric emitted radiance interferometer (AERI). J. Appl. Meteor. 42, 584–597 (2003)

    Article  Google Scholar 

  17. E.N. Ivanov, M.E. Tobar, R.A. Woode, Microwave interferometry: application to precision measurements and noise reduction techniques. IEEE Trans. Ultrason., Ferroelect., Freq. Contr 45(6), 1526–1536 (1998)

    Article  Google Scholar 

  18. S. Kim, C. Nguyen, A displacement measurement technique using millimeter-wave interferometry. IEEE Trans. Microw Theory Tech. 51(6), 1724–1728 (2003)

    Article  Google Scholar 

  19. S. Kim, C. Nguyen, Millimeter-wave Doppler velocimetry for low-velocity measurement, in IEEE MTT-S International Microwave Symposium Digest, Dallas, Jun 2004

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cam Nguyen .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nguyen, C., Kim, S. (2012). Introduction. In: Theory, Analysis and Design of RF Interferometric Sensors. SpringerBriefs in Physics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2023-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-2023-1_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-2022-4

  • Online ISBN: 978-1-4614-2023-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics