Skip to main content

Fixed Costs, Investment Rigidities, and Risk Aversion in Information Security: A Utility-theoretic Approach

  • Conference paper
  • First Online:
Book cover Economics of Information Security and Privacy III

Abstract

This paper addresses the question of determining the optimal timing of interventions in information security management. Using utility theory, we derive the limiting condition under which, given a potential or realized risk, a decision to invest, delay, or abandon can be justified. Our primary focus is on the decision to defer costly deterministic investments, such as the removal of a service or implementation of a security patch, when the costs associated with future security vulnerabilities are uncertain. We outline an investment function with irreversible fixed costs that introduces a rigidity into the investment decision-making profile. This rigidity introduces delay in the implementation of security measures, resulting in cyclical investments in information security, as the decision-maker determines the optimal investment horizon. We therefore show that cycles emerge endogenously given the policy-maker’s chosen trade-offs between investment and the deterioration of the system attributes.

Part of this work was carried out whilst Pym was employed at HP Labs, Bristol, England, UK

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

     ∗ Part of this work was carried out whilst Pym was employed at HP Labs, Bristol, England, UK

  2. 2.

    The solution includes the stochastic process that represents the threat environment.

  3. 3.

    Modelling multiple trade-offs can be accommodated within the same methodology.

  4. 4.

    Well specified, in this case, implies that preferences represented by this utility function are consistent with rational choice. For a full exposition of axiomatic utility theory and decision making see [14].

  5. 5.

    National Institute of Science and Technology (NIST), www.nist.gov; Common Vulnerability Scoring System (CVSS).

References

  1. Abel R (1990) Asset prices under habit formation and catching up with the Joneses. Am Econ Rev 80(2):38–42

    MathSciNet  Google Scholar 

  2. Anderson R (2001) Why information security is hard: an economic perspective. In: Proceedings of 17th Annual Computer Security Applications Conference, pp 358–265. IEEE

    Google Scholar 

  3. Anderson R, Böhme R, Clayton R, Moore T (2007) Security economics and the internal market. Report to the European Network and Information Security Agency (ENISA)

    Google Scholar 

  4. Anderson R, Moore T (2006) The economics of information security. Science 314:610–613. Extended version available at http://www.cl.cam.ac.uk/~rja14/Papers/toulouse-summary.pdf

    Google Scholar 

  5. Arora A, Telang R, Xu H (2008) Optimal policy for software vulnerability disclosure. Manag Sci 54(4):642–656

    Article  Google Scholar 

  6. Arrow K (1971) The theory of risk aversion. In: Essays in the theory of risk bearing. Markham Publ. Co. pp 90–109 (Reprinted from: Aspects of the Theory of Risk Bearing, by Yrjo Jahnssonin Saatio, Helsinki, 1965)

    Google Scholar 

  7. August T, Tunca T (2006) Network software security and user incentives. Manag Sci 52(11):1703–1720

    Article  Google Scholar 

  8. Beres Y, Griffin J, Shiu S, Heitman M, Markle D, Ventura P (2008) Analysing the performance of security solutions to reduce vulnerability exposure window. In: Proceedings of the 2008 Annual Computer Security Applications Conference. IEEE Computer Society Conference Publishing Services (CPS), pp 33–42

    Google Scholar 

  9. Beres Y, Pym D, Shiu S (2010) Decision support for systems security investment. In: Network Operations and Management Symposium Workshops (NOMS Wksps), 2010. IEEE/IFIP, pp 118–125, Doi: 10.1109/NOMSW.2010.5486590, ISBN: 978-1-4244-6037-3, INSPEC Accession Number: 11502735

    Google Scholar 

  10. Bloom N (2009) The impact of uncertainty shocks. Econometrica 77(3):623–685

    Article  MATH  MathSciNet  Google Scholar 

  11. Cavusoglu H, Cavusoglu H, Zhang J (2008) Security patch management: share the burden or share the damage. Manag Sci 54(4):657–670

    Article  Google Scholar 

  12. Collinson M, Monahan B, Pym D (2010) Semantics for structured systems modelling and simulation. In: Proceedings of Simutools 2010. ICST: ACM Digital Library and EU Digital Library. ISBN: 78-963-9799-87-5

    Google Scholar 

  13. Epstein LG, Zin SE (1989) Substitution, risk aversion, and the temporal behavior of consumption growth and asset returns I: a theoretical framework. Econometrica 57(4):937–969

    Article  MATH  MathSciNet  Google Scholar 

  14. Fishburn PC (1970) Utility theory for decision making. Wiley

    Google Scholar 

  15. Fultz N, Grossklags J (2009) Blue versus red: towards a model of distributed security attacks. In: Dingledine R, Golle P (eds) Proceedings of the Thirteenth International Conference Financial Cryptography and Data Security (FC’09), Springer Verlag, pp 167–183, LNCS 5628, ISBN: 978-3-642-03548-7

    Google Scholar 

  16. Gordon L, Loeb M (2002) The economics of information security investment. ACM Trans Inform Syst Secur 5(4):438–457

    Article  Google Scholar 

  17. Gordon L, Loeb M (2006) Managing cybersecurity resources: a cost-benefit analysis. McGraw Hill

    Google Scholar 

  18. Gordon L, Loeb M, Lucyshyn W (2003) Information security expenditures and real options: a wait-and-see approach. Comput Secur J 19(2):1–7

    Google Scholar 

  19. Ioannidis C, Pym D, Williams J (2009) Investments and trade-offs in the economics of information security. In: Dingledine R, Golle P (eds) Proceedings of Financial Cryptography and Data Security ’09, LNCS, Springer, vol 5628, pp 148–166. Preprint available at http://www.abdn.ac.uk/~csc335/IoannidisPymWilliams-FC09.pdf

  20. Ioannidis C, Pym D, Williams J (2011) Information security trade-offs and optimal patching policies. Eur J Oper Res. Forthcoming (TBA), TBA

    Google Scholar 

  21. Kahneman D, Tversky A (1979) Prospect theory: an analysis of decisions under risk. Econometrica 47: 313–327

    Article  Google Scholar 

  22. Keeney R, Raiffa H (1976) Decisions with multiple objectives: preferences and value trade-offs. Wiley

    Google Scholar 

  23. Loistl O (1976) The erroneous approximation of expected utility by means of Taylor’s series expansion: analytic and computational Results. Am Econ Rev 66(5):904–910

    Google Scholar 

  24. Mont MC, Beres Y, Pym D, Shiu S (2010) Economics of identity and access management: providing decision support for investments. In: Network Operations and Management Symposium Workshops (NOMS Wksps), 2010, IEEE/IFIP, pp 134–141, Doi: 10.1109/NOMSW.2010.5486588, ISBN: 978-1-4244-6037-3, INSPEC Accession Number: 11502733

    Google Scholar 

  25. Pratt J (1964) Risk aversion in the small and in the large. Econometrica 32:122–136

    Article  MATH  Google Scholar 

  26. Rogers D, Williams L (2000) Diffusions, Markov processes, and Martingales. Cambridge Mathematics Library

    Google Scholar 

  27. Ross S (1995) Stochastic processes. Wiley

    Google Scholar 

  28. Taksumi K, Goto M (2010) Optimal timing of information security investment: a real options approach. In: Moore T, Pym D, Ioannidis C (eds) Economics of Information Security and Privacy. Proceedings of WEIS 2009, Springer, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Ioannidis .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Proof of Proposition 1: Decision Function Equilibrium

The vector random variable z has n univariate log-normal marginal distributions and correlation structure driven by \(\Sigma = \mathbb{E}\left (\log z - \mu \right ){\left (\log z - \mu \right )}^{{\prime}}\). Where denotes the conjugate transpose, μ = { μ1, , μ n } is a vector of time-homogenous central expectations, and Σ = [σ ij ] is a time-homogenous covariance variance matrix. Setting n = 2, the observed moments and co-moments of z are defined as

$$\begin{array}{rcl} \mathbb{E}\left ({z}_{1}\right )& =& {e}^{{\mu }_{1}+\frac{{\sigma }_{1}^{2}} {2} }\end{array}$$
(43)
$$\begin{array}{rcl} \mathbb{E}\left ({z}_{2}\right )& =& {e}^{{\mu }_{2}+\frac{{\sigma }_{2}^{2}} {2} }\end{array}$$
(44)
$$\begin{array}{rcl} \mathbb{E}{\left ({z}_{1} - \mathbb{E}\left ({z}_{1}\right )\right )}^{2}& =& var \left ({z}_{ 1}\right ) = {e}^{2{\mu }_{1}+{\sigma }_{1}^{2} }\left (-1 + {e}^{{\sigma }_{1}^{2} }\right )\end{array}$$
(45)
$$\begin{array}{rcl} \mathbb{E}{\left ({z}_{2} - \mathbb{E}\left ({z}_{2}\right )\right )}^{2}& =& var \left ({z}_{ 1}\right ) = {e}^{2{\mu }_{2}+{\sigma }_{2}^{2} }\left (-1 + {e}^{{\sigma }_{2}^{2} }\right )\end{array}$$
(46)
$$\begin{array}{rcl} \mathbb{E}\left ({z}_{1}-\mathbb{E}\left ({z}_{1}\right )\right )\left ({z}_{2}-\mathbb{E}\left ({z}_{2}\right )\right )& =& cov \left ({z}_{1},{z}_{2}\right )={e}^{{\mu }_{1}+{\mu }_{2}+\frac{1} {2} \left ({\sigma }_{1}^{2}+{\sigma }_{ 2}^{2}\right ) }\left (-1+{e}^{{\sigma }_{12} }\right )\end{array}$$
(47)

where μ1 is the expected value of the generating normal distribution for the system attribute x 1, μ2 is the expected value of the generating normal distribution for the system attribute x 2, σ1 is the standard deviation of the underlying normal distribution for x 1, σ2 is the standard deviation of the underlying normal distribution for x 2, and σ12 is the covariance of the underlying normal. distribution.

Consider an arrival rate λ. The expected number of events over the interval [t 0, T] is then λ(T − t 0). Let t 0 ≤ t ≤ T and set t 0 = 0. The combined jump process y(t) ∈  2, with poisson arrivals with count λ(t), yields the expected moments of the threat environment discount factors for the interval [0, t] as follows:

$$\begin{array}{rcl} \mathbb{E}\left ({y}_{1}\right )& =& {e}^{{\mu }_{1}+\frac{{\sigma }_{1}^{2}} {2} }\lambda \left (t\right )\end{array}$$
(48)
$$\begin{array}{rcl} \mathbb{E}\left ({y}_{2}\right )& =& {e}^{{\mu }_{2}+\frac{{\sigma }_{2}^{2}} {2} }\lambda \left (t\right )\end{array}$$
(49)
$$\begin{array}{rcl} \mathbb{E}{\left ({y}_{1} - \mathbb{E}\left ({y}_{1}\right )\right )}^{2}& =& var \left ({y}_{ 1}\right ) = {e}^{2{\mu }_{1}+{\sigma }_{1}^{2} }\left (-1 + {e}^{{\sigma }_{1}^{2} }\right )\lambda \left (t\right )\end{array}$$
(50)
$$\begin{array}{rcl} \mathbb{E}{\left ({y}_{2} - \mathbb{E}\left ({y}_{2}\right )\right )}^{2}& =& var \left ({y}_{ 1}\right ) = {e}^{2{\mu }_{2}+{\sigma }_{2}^{2} }\left (-1 + {e}^{{\sigma }_{2}^{2} }\right )\lambda \left (t\right )\end{array}$$
(51)
$$\begin{array}{rcl} \mathbb{E}\left ({y}_{1} - \mathbb{E}\left ({y}_{1}\right )\right )\left ({y}_{2} - \mathbb{E}\left ({y}_{2}\right )\right )& =& cov \left ({y}_{1},{y}_{2}\right ) \\ & =& {e}^{{\mu }_{1}+{\mu }_{2}+\frac{1} {2} \left ({\sigma }_{1}^{2}+{\sigma }_{ 2}^{2}\right ) }\left (-1 + {e}^{{\sigma }_{12} }\right )\lambda \left (t\right )\end{array}$$
(52)

Combining the moments of the system process from (38) with the instantaneous expectations from (1418), yields

$$\begin{array}{rcl}{ \mu }_{{x}_{1}}\left (t\right )& =& {e}^{{e}^{{\mu }_{1}+ \frac{{\sigma }_{1}^{2}} {2} }(t)\lambda }{x}_{ 1}(t)\end{array}$$
(53)
$$\begin{array}{rcl}{ \mu }_{{x}_{2}}\left (t\right )& =& {e}^{{e}^{{\mu }_{2}+ \frac{{\sigma }_{2}^{2}} {2} }(t)\lambda }{x}_{ 2}(t)\end{array}$$
(54)
$$\begin{array}{rcl}{ \sigma }_{{x}_{1}}\left (t\right )& =& {e}^{{e}^{2{\mu }_{1}+{\sigma }_{1}^{2}}\left (-1+{e}^{{\sigma }_{1}^{2}}\right )(t)\lambda }{x}_{1}(t)\end{array}$$
(55)
$$\begin{array}{rcl}{ \sigma }_{{x}_{2}}\left (t\right )& =& {e}^{{e}^{2{\mu }_{2}+{\sigma }_{2}^{2}}\left (-1+{e}^{{\sigma }_{2}^{2}}\right )(t)\lambda }{x}_{2}(t)\end{array}$$
(56)
$$\begin{array}{rcl}{ \sigma }_{{x}_{1},{x}_{2}}\left (t\right )& =& {e}^{{e}^{{\mu }_{1}+{\mu }_{2}+ \frac{1} {2} \left ({\sigma }_{1}^{2}+{\sigma }_{2}^{2}\right )}\left (-1+{e}^{{\sigma }_{12}}\right )(t)\lambda }{x}_{2}(t){x}_{1}(t)\end{array}$$
(57)

Substituting these into (29) gives the explicit instantaneous loss function, for compactness we assume separable additivity, therefore all the covariance terms drop out as follows:

$$\begin{array}{rcl} \mathcal{l}\left (t\vert {w}_{{x}_{1}},{w}_{{x}_{2}},{v}_{{x}_{1}},{v}_{{x}_{2}},{v}_{{x}_{1},{x}_{2}}\right )& =& {e}^{{e}^{2{\mu }_{2}+{\sigma }_{2}^{2}}\big{(}-1+{e}^{{\sigma }_{2}^{2}}\big{)}(t)\lambda }{x}_{2}(t){v}_{{x}_{2}} \\ & & +{e}^{{e}^{2{\mu }_{1}+{\sigma }_{1}^{2}}\big{(}-1+{e}^{{\sigma }_{1}^{2}}\big{)}(t)\lambda }{x}_{1}(t){v}_{{x}_{1}} \\ & & +{e}^{{e}^{{\mu }_{1}+{\mu }_{2}+ \frac{1} {2} \left ({\sigma }_{1}^{2}+{\sigma }_{2}^{2}\right )}\left (-1+{e}^{{\sigma }_{12}}\right )(t)\lambda }{x}_{2}(t){x}_{1}(t){v}_{{x}_{1},{x}_{2}} \\ & & +{e}^{{e}^{{\mu }_{2}+ \frac{{\sigma }_{2}^{2}} {2} }(t)\lambda }{x}_{ 2}(t){w}_{{x}_{2}} \\ & & +{e}^{{e}^{{\mu }_{1}+ \frac{{\sigma }_{1}^{2}} {2} }(t)\lambda }{x}_{ 1}(t){w}_{{x}_{1}} \end{array}$$
(58)

Integrating and discounting over the policy-maker’s time horizon yields the expected loss function at time t 0

$$\begin{array}{rcl} \mathfrak{U}\left ({t}_{0},T\vert {w}_{{x}_{1}},{w}_{{x}_{2}},{v}_{{x}_{1}},{v}_{{x}_{2}},{v}_{{x}_{1},{x}_{2}}\right )& =& -{e}^{-t\beta }{x}_{ 2}(t)\frac{{e}^{-{e}^{2{\mu }_{2}+{\sigma }_{2}^{2}}\left (-1+{e}^{{\sigma }_{2}^{2}}\right )(t)\lambda }{v}_{{x}_{2}}} {\beta + {e}^{2{\mu }_{2}+{\sigma }_{2}^{2}}\left (-1 + {e}^{{\sigma }_{2}^{2}}\right )\lambda } \\ & & -{e}^{-t\beta }{x}_{ 2}(t)\frac{{e}^{-{e}^{{\mu }_{1}+{\mu }_{2}+ \frac{{\sigma }_{1}^{2}} {2} + \frac{{\sigma }_{2}^{2}} {2} }\left (-1+{e}^{{\sigma }_{12}}\right )(t)\lambda }{x}_{ 1}(t){v}_{{x}_{1},{x}_{2}}} {\beta + {e}^{{\mu }_{1}+{\mu }_{2}+\frac{{\sigma }_{1}^{2}} {2} +\frac{{\sigma }_{2}^{2}} {2} }\left (-1 + {e}^{{\sigma }_{12}}\right )\lambda } \\ & & -{e}^{-t\beta }{x}_{ 2}(t)\frac{{e}^{-{e}^{{\mu }_{2}+ \frac{{\sigma }_{2}^{2}} {2} }(t)\lambda }{w}_{{ x}_{2}}} {\beta + {e}^{{\mu }_{2}+\frac{{\sigma }_{2}^{2}} {2} }\lambda } \\ & & -{e}^{-t\beta }{x}_{ 1}(t)\frac{{e}^{-{e}^{2{\mu }_{1}+{\sigma }_{1}^{2}}\left (-1+{e}^{{\sigma }_{1}^{2}}\right )(t)\lambda }{v}_{{x}_{1}}} {\beta + {e}^{2{\mu }_{1}+{\sigma }_{1}^{2}}\left (-1 + {e}^{{\sigma }_{1}^{2}}\right )\lambda } \\ & &{ \left.-{e}^{-t\beta }{x}_{ 1}(t)\frac{{e}^{-{e}^{{\mu }_{1}+ \frac{{\sigma }_{1}^{2}} {2} }(t)\lambda }{w}_{{ x}_{1}}} {\beta + {e}^{{\mu }_{1}+\frac{{\sigma }_{1}^{2}} {2} }\lambda } \right \vert }_{t={t}_{0}}^{t=T} \end{array}$$
(59)

1.2 Proof of Theorem 1

Let T < . For t  ∗  ∈ (t 0, T), the cost function at t 0 is defined as

$$\begin{array}{rcl} \mathfrak{U}\left ({t}_{0},T\vert {w}_{k}\right )& =& {\int }_{{t}_{0}}^{T}{e}^{-\beta t}\left (\hat{K} + {e}^{t\delta }{K}_{ 0}\right ){w}_{k}dt \\ & =&{ \left.{e}^{-t\beta }\left (-\frac{\hat{K}} {\beta } + \frac{{e}^{t\delta }{K}_{0}} {-\beta + \delta }\right ){w}_{k}\right \vert }_{t={t}_{0}}^{t=T}\end{array}$$
(60)

The subsequent trade-off decision-making function relative to the cost function from 34 is now

$$\begin{array}{rcl} \mathfrak{D}\left ({t}_{0},T\vert {w}_{{x}_{1}},{w}_{{x}_{2}},{w}_{K},{v}_{{x}_{1}},{v}_{{x}_{2}},{v}_{{x}_{1},{x}_{2}}\right )& =& -{e}^{-t\beta }{x}_{ 2}(t)\frac{{e}^{-{e}^{2{\mu }_{2}+{\sigma }_{2}^{2}}\left (-1+{e}^{{\sigma }_{2}^{2}}\right )\lambda (t) }{v}_{{x}_{2}}} {\beta + {e}^{2{\mu }_{2}+{\sigma }_{2}^{2}}\left (-1 + {e}^{{\sigma }_{2}^{2}}\right )\lambda } \\ & & -{e}^{-t\beta }{x}_{ 2}(t)\frac{{e}^{-{e}^{{\mu }_{1}+{\mu }_{2}+ \frac{{\sigma }_{1}^{2}} {2} + \frac{{\sigma }_{2}^{2}} {2} }\left (-1+{e}^{{\sigma }_{12}}\right )\lambda (t)}{x}_{ 1}(t){v}_{{x}_{1},{x}_{2}}} {\beta + {e}^{{\mu }_{1}+{\mu }_{2}+\frac{{\sigma }_{1}^{2}} {2} +\frac{{\sigma }_{2}^{2}} {2} }\left (-1 + {e}^{{\sigma }_{12}}\right )\lambda } \\ & & -{e}^{-t\beta }{x}_{ 2}(t)\frac{{e}^{-{e}^{{\mu }_{2}+ \frac{{\sigma }_{2}^{2}} {2} }\lambda (t)}{w}_{{ x}_{2}}} {\beta + {e}^{{\mu }_{2}+\frac{{\sigma }_{2}^{2}} {2} }\lambda } \\ & & +{x}_{1}(t)\left (-\frac{{e}^{-{e}^{2{\mu }_{1}+{\sigma }_{1}^{2}}\left (-1+{e}^{{\sigma }_{1}^{2}}\right )\lambda (t) }{v}_{{x}_{1}}} {\beta + {e}^{2{\mu }_{1}+{\sigma }_{1}^{2}}\left (-1 + {e}^{{\sigma }_{1}^{2}}\right )\lambda } -\frac{{e}^{-{e}^{{\mu }_{1}+ \frac{{\sigma }_{1}^{2}} {2} }\lambda (t)}{w}_{{ x}_{1}}} {\beta + {e}^{{\mu }_{1}+\frac{{\sigma }_{1}^{2}} {2} }\lambda } \right ) \\ & &{ \left.+\left (\frac{\hat{K}} {\beta } + \frac{{e}^{t\delta }{K}_{0}} {\beta - \delta } \right ){w}_{k}\right \vert }_{t={t}_{0}}^{t=T} \end{array}$$
(61)

It is now trivial to see that the inequalities in Theorem 1 are obtained by subtracting last term of (61) from each side and setting either x 1(t 0) or x 2(t 0) to zero.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Ioannidis, C., Pym, D., Williams, J. (2013). Fixed Costs, Investment Rigidities, and Risk Aversion in Information Security: A Utility-theoretic Approach. In: Schneier, B. (eds) Economics of Information Security and Privacy III. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1981-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1981-5_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1980-8

  • Online ISBN: 978-1-4614-1981-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics