Molecular Pharmacology of CXCR4 Inhibition

Chapter

Abstract

In recent years, the chemokine receptor CXCR4 has been shown to be implemented in the mobilization of progenitor cells from the bone marrow. This finding has prompted a search for CXCR4 antagonists acting as stem cell mobilizing agents. In accordance, it is important to look into the molecular pharmacology of well-known CXCR4 antagonists in order to augment the potency and affinity and to increase the specificity of future CXCR4-targeting compounds. In this chapter, binding modes of CXCR4 antagonists that have been shown to mobilize stem cells are discussed. In addition, comparisons between results obtained from structure–function studies and findings from newly released crystal structures are drawn.

Keywords

Zinc Crystallization Glycine Cysteine Pyridine 

Notes

Acknowledgments

The authors are supported from The Danish Research Council for Independent Research│Medical Sciences, The NovoNordisk Foundation, The Lundbeck Foundation and the European Community’s Sixth Framework program (INNOCHEM: LSHB-CT-2005-518167), the AP-Moller Foundation and the Aase and Einar Danielsen Foundation.

References

  1. 1.
    Klabunde T, Hessler G (2002) Drug design strategies for targeting G-protein-coupled receptors. Chembiochem 3(10):928–944. doi:10.1002/1439-7633(20021004)3:10<928::AID-CBIC928> 3.0.CO;2-5PubMedCrossRefGoogle Scholar
  2. 2.
    Schwartz TW, Frimurer TM, Holst B, Rosenkilde MM, Elling CE (2006) Molecular mechanism of 7TM receptor activation—a global toggle switch model. Annu Rev Pharmacol Toxicol 46:481–519. doi: 10.1146/annurev.pharmtox.46.120604.141218 PubMedCrossRefGoogle Scholar
  3. 3.
    Nygaard R, Frimurer TM, Holst B, Rosenkilde MM, Schwartz TW (2009) Ligand binding and micro-switches in 7TM receptor structures. Trends Pharmacol Sci 30(5):249–259. doi:S0165-6147(09)00054-6[pii]10.1016/j.tips.2009.02.006PubMedCrossRefGoogle Scholar
  4. 4.
    Benned-Jensen T, Rosenkilde MM (2009) The role of transmembrane segment II in 7TM receptor activation. Curr Mol Pharmacol 2(2):140–148PubMedCrossRefGoogle Scholar
  5. 5.
    Schwartz TW, Rosenkilde MM (1996) Is there a “lock” for all agonist “keys” in 7TM receptors? Trends Pharmacol Sci 17(6):213–216. doi:0165614796100171[pii]PubMedCrossRefGoogle Scholar
  6. 6.
    Pierce KL, Premont RT, Lefkowitz RJ (2002) Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3(9):639–650. doi:10.1038/nrm908nrm908[pii]PubMedCrossRefGoogle Scholar
  7. 7.
    Hubbell WL, Altenbach C, Hubbell CM, Khorana HG (2003) Rhodopsin structure, dynamics, and activation: a perspective from crystallography, site-directed spin labeling, sulfhydryl reactivity, and disulfide cross-linking. Adv Protein Chem 63:243–290PubMedCrossRefGoogle Scholar
  8. 8.
    Altenbach C, Kusnetzow AK, Ernst OP, Hofmann KP, Hubbell WL (2008) High-resolution distance mapping in rhodopsin reveals the pattern of helix movement due to activation. Proc Natl Acad Sci USA 105(21):7439–7444. doi:0802515105[pii]10.1073/pnas.0802515105PubMedCrossRefGoogle Scholar
  9. 9.
    Scheerer P, Park JH, Hildebrand PW, Kim YJ, Krauss N, Choe HW, Hofmann KP, Ernst OP (2008) Crystal structure of opsin in its G-protein-interacting conformation. Nature 455(7212):497–502. doi:nature07330[pii]10.1038/nature07330PubMedCrossRefGoogle Scholar
  10. 10.
    Park JH, Scheerer P, Hofmann KP, Choe HW, Ernst OP (2008) Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 454(7201):183–187. doi:nature07063[pii]10.1038/nature07063PubMedCrossRefGoogle Scholar
  11. 11.
    Rasmussen SG, Choi HJ, Fung JJ, Pardon E, Casarosa P, Chae PS, Devree BT, Rosenbaum DM, Thian FS, Kobilka TS, Schnapp A, Konetzki I, Sunahara RK, Gellman SH, Pautsch A, Steyaert J, Weis WI, Kobilka BK (2011) Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor. Nature 469(7329):175–180. doi:nature09648[pii]10.1038/nature09648PubMedCrossRefGoogle Scholar
  12. 12.
    Rosenbaum DM, Zhang C, Lyons JA, Holl R, Aragao D, Arlow DH, Rasmussen SG, Choi HJ, Devree BT, Sunahara RK, Chae PS, Gellman SH, Dror RO, Shaw DE, Weis WI, Caffrey M, Gmeiner P, Kobilka BK (2011) Structure and function of an irreversible agonist-beta(2) adrenoceptor complex. Nature 469(7329):236–240. doi:nature09665[pii]10.1038/nature09665PubMedCrossRefGoogle Scholar
  13. 13.
    Yao XJ, Velez Ruiz G, Whorton MR, Rasmussen SG, DeVree BT, Deupi X, Sunahara RK, Kobilka B (2009) The effect of ligand efficacy on the formation and stability of a GPCR-G protein complex. Proc Natl Acad Sci USA 106(23):9501–9506. doi:0811437106[pii]10.1073/pnas.0811437106PubMedCrossRefGoogle Scholar
  14. 14.
    Rosenbaum DM, Cherezov V, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Yao XJ, Weis WI, Stevens RC, Kobilka BK (2007) GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science 318(5854):1266–1273. doi:1150609[pii]10.1126/science.1150609PubMedCrossRefGoogle Scholar
  15. 15.
    Steen A, Schwartz TW, Rosenkilde MM (2009) Targeting CXCR4 in HIV cell-entry inhibition. Mini Rev Med Chem 9:1605–1621. doi:MRMCEpub-055[pii]PubMedCrossRefGoogle Scholar
  16. 16.
    Izatt RM, Pawlak K, Bradshaw JS, Bruening RL (1991) Thermodynamic and kinetic data for macrocycle interactions with cations and anions. Chem Rev 91(8):1721–2085. doi: 10.1021/cr00008a003 CrossRefGoogle Scholar
  17. 17.
    Adam KR, Antolovich M, Atkinson IM, Leong AJ, Lindoy LF, McCool BJ, Davis RL, Kennard CHL, Tasker PA (1994) On the nature of the host-guest interaction between cyclam and 4-tert-butylbenzoic acid-a system pre-assembled for metal complex formation. J Chem Soc Chem Commun 13:1539–1540CrossRefGoogle Scholar
  18. 18.
    Labrosse B, Brelot A, Heveker N, Sol N, Schols D, De Clercq E, Alizon M (1998) Determinants for sensitivity of human immunodeficiency virus coreceptor CXCR4 to the bicyclam AMD3100. J Virol 72(8):6381–6388PubMedGoogle Scholar
  19. 19.
    Schwartz TW (1994) Locating ligand-binding sites in 7TM receptors by protein engineering. Curr Opin Biotechnol 5(4):434–444PubMedCrossRefGoogle Scholar
  20. 20.
    Baldwin JM (1993) The probable arrangement of the helices in G protein-coupled receptors. EMBO J 12(4):1693–1703PubMedGoogle Scholar
  21. 21.
    Gerlach LO, Skerlj RT, Bridger GJ, Schwartz TW (2001) Molecular interactions of cyclam and bicyclam non-peptide antagonists with the CXCR4 chemokine receptor. J Biol Chem 276(17):14153–14160. doi:10.1074/jbc.M010429200M010429200[pii]PubMedGoogle Scholar
  22. 22.
    Troutner DE, Simon J, Ketring AR, Volkert W, Holmes RA (1980) Complexing of Tc-99m with cyclam: concise communication. J Nucl Med 21(5):443–448PubMedGoogle Scholar
  23. 23.
    Este JA, Cabrera C, De Clercq E, Struyf S, Van Damme J, Bridger G, Skerlj RT, Abrams MJ, Henson G, Gutierrez A, Clotet B, Schols D (1999) Activity of different bicyclam derivatives against human immunodeficiency virus depends on their interaction with the CXCR4 chemokine receptor. Mol Pharmacol 55(1):67–73PubMedGoogle Scholar
  24. 24.
    Gerlach LO, Jakobsen JS, Jensen KP, Rosenkilde MR, Skerlj RT, Ryde U, Bridger GJ, Schwartz TW (2003) Metal ion enhanced binding of AMD3100 to Asp262 in the CXCR4 receptor. Biochemistry 42(3):710–717. doi: 10.1021/bi0264770 PubMedCrossRefGoogle Scholar
  25. 25.
    Rosenkilde MM, Gerlach LO, Jakobsen JS, Skerlj RT, Bridger GJ, Schwartz TW (2004) Molecular mechanism of AMD3100 antagonism in the CXCR4 receptor: transfer of binding site to the CXCR3 receptor. J Biol Chem 279(4):3033–3041. doi:10.1074/jbc.M309546200M309546200[pii]PubMedCrossRefGoogle Scholar
  26. 26.
    Hatse S, Princen K, Bridger G, De Clercq E, Schols D (2002) Chemokine receptor inhibition by AMD3100 is strictly confined to CXCR4. FEBS Lett 527(1–3):255–262. doi: S0014579302031435[pii]PubMedCrossRefGoogle Scholar
  27. 27.
    Bridger GJ, Skerlj RT, Padmanabhan S, Martellucci SA, Henson GW, Abrams MJ, Joao HC, Witvrouw M, De Vreese K, Pauwels R, De Clercq E (1996) Synthesis and structure–activity relationships of phenylenebis(methylene)-linked bis-tetraazamacrocycles that inhibit human immunodeficiency virus replication. 2. Effect of heteroaromatic linkers on the activity of bicyclams. J Med Chem 39(1):109–119. doi:10.1021/jm950584tjm950584t[pii]PubMedCrossRefGoogle Scholar
  28. 28.
    Joao HC, De Vreese K, Pauwels R, De Clercq E, Henson GW, Bridger GJ (1995) Quantitative structural activity relationship study of bis-tetraazacyclic compounds. A novel series of HIV-1 and HIV-2 inhibitors. J Med Chem 38(19):3865–3873PubMedCrossRefGoogle Scholar
  29. 29.
    Rosenkilde MM, Gerlach LO, Hatse S, Skerlj RT, Schols D, Bridger GJ, Schwartz TW (2007) Molecular mechanism of action of monocyclam versus bicyclam non-peptide antagonists in the CXCR4 chemokine receptor. J Biol Chem 282(37):27354–27365. doi:M704739200[pii]10.1074/jbc.M704739200PubMedCrossRefGoogle Scholar
  30. 30.
    Wong RS, Bodart V, Metz M, Labrecque J, Bridger G, Fricker SP (2008) Comparison of the potential multiple binding modes of bicyclam, monocylam, and noncyclam small-molecule CXC chemokine receptor 4 inhibitors. Mol Pharmacol 74(6):1485–1495. doi:mol.108.049775[pii]10.1124/mol.108.049775PubMedCrossRefGoogle Scholar
  31. 31.
    Moyle G, DeJesus E, Boffito M, Wong RS, Gibney C, Badel K, MacFarland R, Calandra G, Bridger G, Becker S (2009) Proof of activity with AMD11070, an orally bioavailable inhibitor of CXCR4-tropic HIV type 1. Clin Infect Dis 48(6):798–805. doi:10.1086/59709710.1086/597097[pii]PubMedCrossRefGoogle Scholar
  32. 32.
    Murakami T, Zhang TY, Koyanagi Y, Tanaka Y, Kim J, Suzuki Y, Minoguchi S, Tamamura H, Waki M, Matsumoto A, Fujii N, Shida H, Hoxie JA, Peiper SC, Yamamoto N (1999) Inhibitory mechanism of the CXCR4 antagonist T22 against human immunodeficiency virus type 1 infection. J Virol 73(9):7489–7496PubMedGoogle Scholar
  33. 33.
    Tamamura H, Imai M, Ishihara T, Masuda M, Funakoshi H, Oyake H, Murakami T, Arakaki R, Nakashima H, Otaka A, Ibuka T, Waki M, Matsumoto A, Yamamoto N, Fujii N (1998) Pharmacophore identification of a chemokine receptor (CXCR4) antagonist, T22 ([Tyr(5,12), Lys7]-polyphemusin II), which specifically blocks T cell-line-tropic HIV-1 infection. Bioorg Med Chem 6(7):1033–1041. doi:S0968-0896(98)00061-3[pii]PubMedCrossRefGoogle Scholar
  34. 34.
    Tamamura H, Murakami T, Masuda M, Otaka A, Takada W, Ibuka T, Nakashima H, Waki M, Matsumoto A, Yamamoto N et al (1994) Structure–activity relationships of an anti-HIV peptide, T22. Biochem Biophys Res Commun 205(3):1729–1735. doi:S0006291X84728683[pii]PubMedCrossRefGoogle Scholar
  35. 35.
    Abraham M, Beider K, Wald H, Weiss ID, Zipori D, Galun E, Nagler A, Eizenberg O, Peled A (2009) The CXCR4 antagonist 4F-benzoyl-TN14003 stimulates the recovery of the bone marrow after transplantation. Leukemia 23(8):1378–1388. doi:leu200956[pii]10.1038/leu.2009.56PubMedCrossRefGoogle Scholar
  36. 36.
    Trent JO, Wang ZX, Murray JL, Shao W, Tamamura H, Fujii N, Peiper SC (2003) Lipid bilayer simulations of CXCR4 with inverse agonists and weak partial agonists. J Biol Chem 278(47):47136–47144. doi:10.1074/jbc.M307850200M307850200[pii]PubMedCrossRefGoogle Scholar
  37. 37.
    Tamamura H, Omagari A, Oishi S, Kanamoto T, Yamamoto N, Peiper SC, Nakashima H, Otaka A, Fujii N (2000) Pharmacophore identification of a specific CXCR4 inhibitor, T140, leads to development of effective anti-HIV agents with very high selectivity indexes. Bioorg Med Chem Lett 10(23):2633–2637. doi:S0960-894X(00)00535-7[pii]PubMedCrossRefGoogle Scholar
  38. 38.
    Vabeno J, Nikiforovich GV, Marshall GR (2006) A minimalistic 3D pharmacophore model for cyclopentapeptide CXCR4 antagonists. Biopolymers 84(5):459–471. doi: 10.1002/bip.20508 PubMedCrossRefGoogle Scholar
  39. 39.
    Vabeno J, Nikiforovich GV, Marshall GR (2006) Insight into the binding mode for cyclopentapeptide antagonists of the CXCR4 receptor. Chem Biol Drug Des 67(5):346–354. doi:JPP387[pii]10.1111/j.1747-0285.2006.00387.xPubMedCrossRefGoogle Scholar
  40. 40.
    Wu B, Chien EY, Mol CD, Fenalti G, Liu W, Katritch V, Abagyan R, Brooun A, Wells P, Bi FC, Hamel DJ, Kuhn P, Handel TM, Cherezov V, Stevens RC (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330(6007):1066–1071. doi:science.1194396[pii]10.1126/science.1194396PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.The Laboratory of Molecular Pharmacology, Department of Neuroscience and PharmacologyUniversity of Copenhagen, The Panum InstituteCopenhagenDenmark

Personalised recommendations