CXCR4 Antagonists for the Treatment of CML

  • Anupriya Agarwal
  • Thomas O’Hare
  • Michael Deininger


Tyrosine kinase inhibitor (TKI)-based targeted therapy has improved clinical outcomes in chronic myeloid leukemia (CML) to an extent unrivaled in other hematologic malignancies. Targeted therapy elicits durable remissions but does not eradicate leukemic stem cells (LSCs), the reservoir of CML. Recurrence of active leukemia is the predictable result upon cessation of therapy, even in the best responders. Interactions between LSCs and the bone marrow microenvironment are thought to mediate disease persistence in vivo, despite effective inhibition of BCR-ABL tyrosine kinase, the molecular driver of CML. Homing and engraftment of CML LSCs in the absence of therapy is characterized by an exaggerated dependence on the CD44 homing receptor and reduced dependence on C-X-C chemokine receptor 4 (CXCR4) compared to normal hematopoietic stem cells (HSCs). In fact, high-level BCR-ABL expression leads to downregulation of CXCR4. Recent evidence suggests that successful TKI-based targeting of BCR-ABL restores reliance on CXCR4 and its ligand, stromal cell-derived factor 1 (SDF-1), for trafficking and homing of CML LSCs to the bone marrow. Perturbation of the CXCR4/SDF-1 interaction with CXCR4 antagonists can promote egress of CML LSCs and progenitor cells from the bone marrow niche, potentially increasing their susceptibility to targeted and conventional purging strategies. Targeting of CXCR4/SDF-1 interactions represents a promising therapeutic avenue and is currently being evaluated in clinical trials. Here, we explore the role of CXCR4/SDF-1 signaling in the ­navigation of CML LSCs within the bone marrow microenvironment and summarize pre-clinical and clinical development of CXCR4 antagonists for use in extending the practical limit of targeted therapy to disease eradication, the ultimate goal in the treatment of CML.


CML CXCR4 SDF-1 Plerixafor (AMD3100) Disease persistence 



We thank Sarah Bowden and Suzanne Wickens for administrative support. This study was supported by NIH grants HL082978-01 (M.W.D.) and CA04963920A2 (M.W.D.), Leukemia and Lymphoma Society grant 7036–01 (M.W.D.), and a grant from Genzyme Pharmaceuticals (M.W.D.). M.W.D. is a Leukemia and Lymphoma Society Scholar in Clinical Research. A.A. is a recipient of Lady Tata Memorial Trust and OHSU Knight Cancer Institute Cancer Research Development Awards.


  1. 1.
    Rowley JD (1973) Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243(5405): 290–293PubMedCrossRefGoogle Scholar
  2. 2.
    Nowell PC, Hungerford DA (1960) Chromosome studies on normal and leukemic human leukocytes. J Natl Cancer Inst 25:85–109PubMedGoogle Scholar
  3. 3.
    Daley GQ, Van Etten RA, Baltimore D (1990) Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 247(4944): 824–830PubMedCrossRefGoogle Scholar
  4. 4.
    Groffen J, Stephenson JR, Heisterkamp N, de Klein A, Bartram CR, Grosveld G (1984) Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell 36(1):93–99PubMedCrossRefGoogle Scholar
  5. 5.
    Cowan-Jacob SW, Guez V, Fendrich G et al (2004) Imatinib (STI571) resistance in chronic myelogenous leukemia: molecular basis of the underlying mechanisms and potential strategies for treatment. Mini Rev Med Chem 4(3):285–299PubMedCrossRefGoogle Scholar
  6. 6.
    Quintas-Cardama A, Cortes J (2009) Molecular biology of bcr-abl1-positive chronic myeloid leukemia. Blood 113(8):1619–1630PubMedCrossRefGoogle Scholar
  7. 7.
    Calabretta B, Perrotti D (2004) The biology of CML blast crisis. Blood 103(11):4010–4022PubMedCrossRefGoogle Scholar
  8. 8.
    Druker BJ, Guilhot F, O’Brien SG et al (2006) Five-year follow-up of patients receiving ­imatinib for chronic myeloid leukemia. N Engl J Med 355(23):2408–2417PubMedCrossRefGoogle Scholar
  9. 9.
    Bhatia R, Verfaillie CM (1998) Inhibition of BCR-ABL expression with antisense oligodeoxynucleotides restores beta1 integrin-mediated adhesion and proliferation inhibition in chronic myelogenous leukemia hematopoietic progenitors. Blood 91(9):3414–3422PubMedGoogle Scholar
  10. 10.
    Salgia R, Quackenbush E, Lin J et al (1999) The BCR/ABL oncogene alters the chemotactic response to stromal-derived factor-1alpha. Blood 94(12):4233–4246PubMedGoogle Scholar
  11. 11.
    Krause DS, Lazarides K, von Andrian UH, Van Etten RA (2006) Requirement for CD44 in homing and engraftment of BCR-ABL-expressing leukemic stem cells. Nat Med 12(10): 1175–1180PubMedCrossRefGoogle Scholar
  12. 12.
    Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE (2006) Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 12(10):1167–1174PubMedCrossRefGoogle Scholar
  13. 13.
    Goardon N, Marchi E, Atzberger A et al (2011) Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell 19(1):138–152PubMedCrossRefGoogle Scholar
  14. 14.
    Hughes TP, Kaeda J, Branford S et al (2003) Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med 349(15):1423–1432PubMedCrossRefGoogle Scholar
  15. 15.
    Rousselot P, Huguet F, Rea D et al (2007) Imatinib mesylate discontinuation in patients with chronic myelogenous leukemia in complete molecular remission for more than 2 years. Blood 109(1):58–60PubMedCrossRefGoogle Scholar
  16. 16.
    Mahon FX, Rea D, Guilhot J, et al. (2010) Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol 11(11):1029–1035.Google Scholar
  17. 17.
    Copland M, Hamilton A, Elrick LJ et al (2006) Dasatinib (BMS-354825) targets an earlier progenitor population than imatinib in primary CML but does not eliminate the quiescent fraction. Blood 107(11):4532–4539PubMedCrossRefGoogle Scholar
  18. 18.
    Jorgensen HG, Allan EK, Jordanides NE, Mountford JC, Holyoake TL (2007) Nilotinib exerts equipotent anti-proliferative effects to imatinib and does not induce apoptosis in CD34+ CML cells. Blood 109:4016–4019PubMedCrossRefGoogle Scholar
  19. 19.
    O’Hare T, Deininger MW, Eide CA, Clackson T, Druker BJ. (2011) Targeting the BCR-ABL signaling pathway in therapy-resistant Philadelphia chromosome-positive leukemia. Clin Cancer Res 17(2):212–221Google Scholar
  20. 20.
    Preudhomme C, Guilhot J, Nicolini FE, et al. (2010) Imatinib plus peginterferon alfa-2a in chronic myeloid leukemia. N Engl J Med 363(26):2511–2521.Google Scholar
  21. 21.
    Zhang B, Strauss AC, Chu S et al (2010) Effective targeting of quiescent chronic myelogenous leukemia stem cells by histone deacetylase inhibitors in combination with imatinib mesylate. Cancer Cell 17(5):427–442PubMedCrossRefGoogle Scholar
  22. 22.
    Helgason GV, Young GA, Holyoake TL (2010) Targeting chronic myeloid leukemia stem cells. Curr Hematol Malig Rep 5(2):81–87PubMedCrossRefGoogle Scholar
  23. 23.
    Corbin AS, Agarwal A, Loriaux M, Cortes J, Deininger MW, Druker BJ. (2011) Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J Clin Invest 121(1):396–409Google Scholar
  24. 24.
    Graham SM, Jorgensen HG, Allan E et al (2002) Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 99(1):319–325PubMedCrossRefGoogle Scholar
  25. 25.
    Chu S, Xu H, Shah NP et al (2005) Detection of BCR-ABL kinase mutations in CD34+ cells from chronic myelogenous leukemia patients in complete cytogenetic remission on imatinib mesylate treatment. Blood 105(5):2093–2098PubMedCrossRefGoogle Scholar
  26. 26.
    White DL, Saunders VA, Dang P et al (2007) Most CML patients who have a suboptimal response to imatinib have low OCT-1 activity: higher doses of imatinib may overcome the negative impact of low OCT-1 activity. Blood 110(12):4064–4072PubMedCrossRefGoogle Scholar
  27. 27.
    Mahon FX, Belloc F, Lagarde V et al (2003) MDR1 gene overexpression confers resistance to imatinib mesylate in leukemia cell line models. Blood 101(6):2368–2373PubMedCrossRefGoogle Scholar
  28. 28.
    Damiano JS, Hazlehurst LA, Dalton WS (2001) Cell adhesion-mediated drug resistance (CAM-DR) protects the K562 chronic myelogenous leukemia cell line from apoptosis induced by BCR/ABL inhibition, cytotoxic drugs, and gamma-irradiation. Leukemia 15(8):1232–1239PubMedCrossRefGoogle Scholar
  29. 29.
    Lane SW, Scadden DT, Gilliland DG (2009) The leukemic stem cell niche: current concepts and therapeutic opportunities. Blood 114(6):1150–1157PubMedCrossRefGoogle Scholar
  30. 30.
    Damiano JS, Cress AE, Hazlehurst LA, Shtil AA, Dalton WS (1999) Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood 93(5):1658–1667PubMedGoogle Scholar
  31. 31.
    Luster AD (1998) Chemokines–chemotactic cytokines that mediate inflammation. N Engl J Med 338(7):436–445PubMedCrossRefGoogle Scholar
  32. 32.
    Baggiolini M (1998) Chemokines and leukocyte traffic. Nature 392(6676):565–568PubMedCrossRefGoogle Scholar
  33. 33.
    Tavor S, Eisenbach M, Jacob-Hirsch J et al (2008) The CXCR4 antagonist AMD3100 impairs survival of human AML cells and induces their differentiation. Leukemia 22(12): 2151–5158PubMedCrossRefGoogle Scholar
  34. 34.
    Azab AK, Runnels JM, Pitsillides C et al (2009) CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy. Blood 113(18):4341–4351PubMedCrossRefGoogle Scholar
  35. 35.
    Burger JA, Burkle A (2007) The CXCR4 chemokine receptor in acute and chronic leukaemia: a marrow homing receptor and potential therapeutic target. Br J Haematol 137(4):288–296PubMedCrossRefGoogle Scholar
  36. 36.
    Geay JF, Buet D, Zhang Y et al (2005) p210BCR-ABL inhibits SDF-1 chemotactic response via alteration of CXCR4 signaling and down-regulation of CXCR4 expression. Cancer Res 65(7):2676–2683PubMedCrossRefGoogle Scholar
  37. 37.
    Jin L, Tabe Y, Konoplev S et al (2008) CXCR4 up-regulation by imatinib induces chronic myelogenous leukemia (CML) cell migration to bone marrow stroma and promotes survival of quiescent CML cells. Mol Cancer Ther 7(1):48–58PubMedCrossRefGoogle Scholar
  38. 38.
    Nervi B, Ramirez P, Rettig MP et al (2009) Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100. Blood 113(24): 6206–6214PubMedCrossRefGoogle Scholar
  39. 39.
    Zeng Z, Shi YX, Samudio IJ et al (2009) Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood 113(24):6215–6224PubMedCrossRefGoogle Scholar
  40. 40.
    Oberlin E, Amara A, Bachelerie F et al (1996) The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature 382(6594):833–835PubMedCrossRefGoogle Scholar
  41. 41.
    Burger JA, Kipps TJ (2006) CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood 107(5):1761–1767PubMedCrossRefGoogle Scholar
  42. 42.
    Bleul CC, Fuhlbrigge RC, Casasnovas JM, Aiuti A, Springer TA (1996) A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J Exp Med 184(3): 1101–1109PubMedCrossRefGoogle Scholar
  43. 43.
    Shirozu M, Nakano T, Inazawa J et al (1995) Structure and chromosomal localization of the human stromal cell-derived factor 1 (SDF1) gene. Genomics 28(3):495–500PubMedCrossRefGoogle Scholar
  44. 44.
    Nagasawa T, Hirota S, Tachibana K et al (1996) Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382(6592): 635–638PubMedCrossRefGoogle Scholar
  45. 45.
    Ma Q, Jones D, Borghesani PR et al (1998) Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4 and SDF-1-deficient mice. Proc Natl Acad Sci USA 95(16):9448–9453PubMedCrossRefGoogle Scholar
  46. 46.
    Mayack SR, Wagers AJ (2008) Osteolineage niche cells initiate hematopoietic stem cell mobilization. Blood 112(3):519–531PubMedCrossRefGoogle Scholar
  47. 47.
    Nilsson SK, Johnston HM, Coverdale JA (2001) Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches. Blood 97(8):2293–2299PubMedCrossRefGoogle Scholar
  48. 48.
    Netelenbos T, van den Born J, Kessler FL et al (2003) Proteoglycans on bone marrow endothelial cells bind and present SDF-1 towards hematopoietic progenitor cells. Leukemia 17(1): 175–184PubMedCrossRefGoogle Scholar
  49. 49.
    Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121(7):1109–1121PubMedCrossRefGoogle Scholar
  50. 50.
    Lo Celso C, Fleming HE, Wu JW, et al (2009) Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 457(7225):92–96Google Scholar
  51. 51.
    Plett PA, Frankovitz SM, Wolber FM, Abonour R, Orschell-Traycoff CM (2002) Treatment of circulating CD34(+) cells with SDF-1alpha or anti-CXCR4 antibody enhances migration and NOD/SCID repopulating potential. Exp Hematol 30(9):1061–1069PubMedCrossRefGoogle Scholar
  52. 52.
    Teicher BA, Fricker SP. (2010) CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res 16(11):2927–2931Google Scholar
  53. 53.
    Durig J, Testa NG, Heyworth CM (1999) Distinct biological effects of macrophage inflammatory protein-1alpha and stroma-derived factor-1alpha on CD34+ hemopoietic cells. Stem Cells 17(2):62–71PubMedCrossRefGoogle Scholar
  54. 54.
    Kijowski J, Baj-Krzyworzeka M, Majka M et al (2001) The SDF-1-CXCR4 axis stimulates VEGF secretion and activates integrins but does not affect proliferation and survival in lymphohematopoietic cells. Stem Cells 19(5):453–466PubMedCrossRefGoogle Scholar
  55. 55.
    Mellado M, Rodriguez-Frade JM, Manes S, Martinez AC (2001) Chemokine signaling and functional responses: the role of receptor dimerization and TK pathway activation. Annu Rev Immunol 19:397–421PubMedCrossRefGoogle Scholar
  56. 56.
    Zhang XF, Wang JF, Matczak E, Proper JA, Groopman JE (2001) Janus kinase 2 is involved in stromal cell-derived factor-1alpha-induced tyrosine phosphorylation of focal adhesion proteins and migration of hematopoietic progenitor cells. Blood 97(11):3342–3348PubMedCrossRefGoogle Scholar
  57. 57.
    Barbero S, Bonavia R, Bajetto A et al (2003) Stromal cell-derived factor 1alpha stimulates human glioblastoma cell growth through the activation of both extracellular signal-regulated kinases 1/2 and Akt. Cancer Res 63(8):1969–1974PubMedGoogle Scholar
  58. 58.
    Nakata Y, Tomkowicz B, Gewirtz AM, Ptasznik A (2006) Integrin inhibition through Lyn-dependent cross talk from CXCR4 chemokine receptors in normal human CD34+ marrow cells. Blood 107(11):4234–4239PubMedCrossRefGoogle Scholar
  59. 59.
    Peled A, Kollet O, Ponomaryov T et al (2000) The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood 95(11):3289–3296PubMedGoogle Scholar
  60. 60.
    Avecilla ST, Hattori K, Heissig B et al (2004) Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Med 10(1):64–71PubMedCrossRefGoogle Scholar
  61. 61.
    Dommange F, Cartron G, Espanel C et al (2006) CXCL12 polymorphism and malignant cell dissemination/tissue infiltration in acute myeloid leukemia. FASEB J 20(11):1913–1915PubMedCrossRefGoogle Scholar
  62. 62.
    de Oliveira CE, Cavassin GG, Perim Ade L, et al (2007) Stromal cell-derived factor-1 chemokine gene variant in blood donors and chronic myelogenous leukemia patients. J Clin Lab Anal 21(1):49–54Google Scholar
  63. 63.
    Odemis V, Boosmann K, Heinen A, Kury P, Engele J. (2010) CXCR7 is an active component of SDF-1 signalling in astrocytes and Schwann cells. J Cell Sci 123(Pt 7):1081–1088Google Scholar
  64. 64.
    Tarnowski M, Liu R, Wysoczynski M, Ratajczak J, Kucia M, Ratajczak MZ. (2010) CXCR7: a new SDF-1-binding receptor in contrast to normal CD34(+) progenitors is functional and is expressed at higher level in human malignant hematopoietic cells. Eur J Haematol 85(6):472–483Google Scholar
  65. 65.
    Kucia M, Reca R, Miekus K, et al (2005) Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1-CXCR4 axis. Stem cells (Dayton, Ohio) 23(7):879–894Google Scholar
  66. 66.
    Kucia M, Jankowski K, Reca R et al (2004) CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion. J Mol Histol 35(3):233–245PubMedCrossRefGoogle Scholar
  67. 67.
    Peled A, Hardan I, Trakhtenbrot L et al (2002) Immature leukemic CD34  +  CXCR4+ cells from CML patients have lower integrin-dependent migration and adhesion in response to the chemokine SDF-1. Stem Cells 20(3):259–266PubMedCrossRefGoogle Scholar
  68. 68.
    Wen Q, Chen RL, Cai KR, Lin YW. (2011) [Level of SDF-1/CXCR4 in children with acute leukemia and its significance]. Zhongguo Shi Yan Xue Ye Xue Za Zhi 19(2):324–326Google Scholar
  69. 69.
    Kalinkovich A, Tavor S, Avigdor A et al (2006) Functional CXCR4-expressing microparticles and SDF-1 correlate with circulating acute myelogenous leukemia cells. Cancer Res 66(22): 11013–11020PubMedCrossRefGoogle Scholar
  70. 70.
    Burger JA. (2010) Chemokines and chemokine receptors in chronic lymphocytic leukemia (CLL): from understanding the basics towards therapeutic targeting. Semin Cancer Biol 20(6): 424–430Google Scholar
  71. 71.
    Sipkins DA, Wei X, Wu JW et al (2005) In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 435(7044):969–973PubMedCrossRefGoogle Scholar
  72. 72.
    Spiegel A, Kollet O, Peled A et al (2004) Unique SDF-1-induced activation of human precursor-B ALL cells as a result of altered CXCR4 expression and signaling. Blood 103(8):2900–2907PubMedCrossRefGoogle Scholar
  73. 73.
    Cashman J, Clark-Lewis I, Eaves A, Eaves C (2002) Stromal-derived factor 1 inhibits the cycling of very primitive human hematopoietic cells in vitro and in NOD/SCID mice. Blood 99(3):792–799PubMedCrossRefGoogle Scholar
  74. 74.
    Colmone A, Amorim M, Pontier AL, Wang S, Jablonski E, Sipkins DA (2008) Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science 322(5909):1861–1865PubMedCrossRefGoogle Scholar
  75. 75.
    Mendez-Ferrer S, Lucas D, Battista M, Frenette PS (2008) Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452(7186):442–447PubMedCrossRefGoogle Scholar
  76. 76.
    Williams SA, Harata-Lee Y, Comerford I, Anderson RL, Smyth MJ, McColl SR. (2010) Multiple functions of CXCL12 in a syngeneic model of breast cancer. Mol Cancer 9:250Google Scholar
  77. 77.
    Gordon MY, Dowding CR, Riley GP, Goldman JM, Greaves MF (1987) Altered adhesive interactions with marrow stroma of haematopoietic progenitor cells in chronic myeloid leukaemia. Nature 328(6128):342–344PubMedCrossRefGoogle Scholar
  78. 78.
    Durig J, Rosenthal C, Elmaagacli A et al (2000) Biological effects of stroma-derived factor-1 alpha on normal and CML CD34+ haemopoietic cells. Leukemia 14(9):1652–1660PubMedCrossRefGoogle Scholar
  79. 79.
    Ptasznik A, Urbanowska E, Chinta S et al (2002) Crosstalk between BCR/ABL oncoprotein and CXCR4 signaling through a Src family kinase in human leukemia cells. J Exp Med 196(5):667–678PubMedCrossRefGoogle Scholar
  80. 80.
    Tabe Y, Jin L, Yixin Z, et al. Role of stromal microenvironment in non-pharmacological resistance of CML to tyrosine kinase inhibitors through Lyn/CXCR4 interactions in lipid rafts. Annuual Meeting of American Society of Hematology Vol. 2010Google Scholar
  81. 81.
    Zhao F, Mancuso A, Bui TV, et al. (2010) Imatinib resistance associated with BCR-ABL upregulation is dependent on HIF-1alpha-induced metabolic reprograming. Oncogene 29(20): 2962–2972Google Scholar
  82. 82.
    Ceradini DJ, Kulkarni AR, Callaghan MJ et al (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10(8):858–864PubMedCrossRefGoogle Scholar
  83. 83.
    Staller P, Sulitkova J, Lisztwan J, Moch H, Oakeley EJ, Krek W (2003) Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature 425(6955): 307–311PubMedCrossRefGoogle Scholar
  84. 84.
    Bhatia R, McGlave PB, Verfaillie CM (1995) Treatment of marrow stroma with interferon-alpha restores normal beta 1 integrin-dependent adhesion of chronic myelogenous leukemia hematopoietic progenitors. Role of MIP-1 alpha. J Clin Invest 96(2):931–939Google Scholar
  85. 85.
    Bhatia R, Munthe HA, Verfaillie CM (1999) Role of abnormal integrin-cytoskeletal interactions in impaired beta1 integrin function in chronic myelogenous leukemia hematopoietic progenitors. Exp Hematol 27(9):1384–1396PubMedCrossRefGoogle Scholar
  86. 86.
    Giuntoli S, Rovida E, Barbetti V (2006) Cipolleschi MG, Olivotto M. Dello Sbarba P Hypoxia suppresses BCR/Abl and selects imatinib-insensitive progenitors within clonal CML populations Leukemia 20(7):1291–1293Google Scholar
  87. 87.
    Vianello F, Villanova F, Tisato V, et al. (2010) Bone marrow mesenchymal stromal cells non-selectively protect chronic myeloid leukemia cells from imatinib-induced apoptosis via the CXCR4/CXCL12 axis. Haematologica 95(7):1081–1089Google Scholar
  88. 88.
    Mishra S, Zhang B, Cunnick JM, Heisterkamp N, Groffen J (2006) Resistance to imatinib of bcr/abl p190 lymphoblastic leukemia cells. Cancer Res 66(10):5387–5393PubMedCrossRefGoogle Scholar
  89. 89.
    Juarez J, Bendall L, Bradstock K (2004) Chemokines and their receptors as therapeutic ­targets: the role of the SDF-1/CXCR4 axis. Curr Pharm Des 10(11):1245–1259PubMedCrossRefGoogle Scholar
  90. 90.
    De Clercq E (2003) The bicyclam AMD3100 story. Nature reviews 2(7):581–587PubMedCrossRefGoogle Scholar
  91. 91.
    De Clercq E. (2010) Recent advances on the use of the CXCR4 antagonist plerixafor (AMD3100, Mozobil) and potential of other CXCR4 antagonists as stem cell mobilizers. Pharmacol Ther 128(3):509–518Google Scholar
  92. 92.
    Liles WC, Broxmeyer HE, Rodger E et al (2003) Mobilization of hematopoietic progenitor cells in healthy volunteers by AMD3100, a CXCR4 antagonist. Blood 102(8):2728–2730PubMedCrossRefGoogle Scholar
  93. 93.
    DiPersio JF, Micallef IN, Stiff PJ et al (2009) Phase III prospective randomized double-blind placebo-controlled trial of plerixafor plus granulocyte colony-stimulating factor compared with placebo plus granulocyte colony-stimulating factor for autologous stem-cell mobilization and transplantation for patients with non-Hodgkin’s lymphoma. J Clin Oncol 27(28): 4767–4773PubMedCrossRefGoogle Scholar
  94. 94.
    Brave M, Farrell A, Ching Lin S, et al. (2010) FDA review summary: Mozobil in combination with granulocyte colony-stimulating factor to mobilize hematopoietic stem cells to the peripheral blood for collection and subsequent autologous transplantation. Oncology 78(3–4):282–288Google Scholar
  95. 95.
    Pusic I, DiPersio JF. (2010) Update on clinical experience with AMD3100, an SDF-1/CXCL12-CXCR4 inhibitor, in mobilization of hematopoietic stem and progenitor cells. Curr Opin Hematol 17(4):319–326Google Scholar
  96. 96.
    Uy GL, Rettig MP, McFarland KM (2008) Mobilization and chemosensitization of AMLwith the CXCR4 antagonist plerixafor (AMD3100): a phase I/II study of AMD3100  +  MEC in patients with relapsed or refractory disease. Blood 112:(11):678–679Google Scholar
  97. 97.
    Uy GL, Rettig MP, McFarland K, et al (2009) A phase I/II study of chemosensitization with the CXCR4 antagonist plerixafor in relapsed or refractory AML. Blood 114:abstract 787(22):325Google Scholar
  98. 98.
    Dillmann F, Veldwijk MR, Laufs S et al (2009) Plerixafor inhibits chemotaxis toward SDF-1 and CXCR4-mediated stroma contact in a dose-dependent manner resulting in increased ­susceptibility of BCR-ABL+ cell to Imatinib and Nilotinib. Leuk Lymphoma 50(10): 1676–1686PubMedCrossRefGoogle Scholar
  99. 99.
    Agarwal A, Fleischman AG, Petersen CL, et al (2010) Effects of plerixafor (AMD3100) in combination with tyrosine kinase inhibition In a murine model of CML. Blood 116:(21):1387–1388Google Scholar
  100. 100.
    Perez-Caro M, Cobaleda C, Gonzalez-Herrero I et al (2009) Cancer induction by restriction of oncogene expression to the stem cell compartment. EMBO J 28(1):8–20PubMedCrossRefGoogle Scholar
  101. 101.
    Stone ND, Dunaway SB, Flexner C et al (2007) Multiple-dose escalation study of the safety, pharmacokinetics, and biologic activity of oral AMD070, a selective CXCR4 receptor inhibitor, in human subjects. Antimicrob Agents Chemother 51(7):2351–2358PubMedCrossRefGoogle Scholar
  102. 102.
    Murakami T, Kumakura S, Yamazaki T et al (2009) The novel CXCR4 antagonist KRH-3955 is an orally bioavailable and extremely potent inhibitor of human immunodeficiency virus type 1 infection: comparative studies with AMD3100. Antimicrob Agents Chemother 53(7): 2940–2948PubMedCrossRefGoogle Scholar
  103. 103.
    Tamamura H, Hori A, Kanzaki N et al (2003) T140 analogs as CXCR4 antagonists identified as anti-metastatic agents in the treatment of breast cancer. FEBS Lett 550(1–3):79–83PubMedCrossRefGoogle Scholar
  104. 104.
    Takenaga M, Tamamura H, Hiramatsu K et al (2004) A single treatment with microcapsules containing a CXCR4 antagonist suppresses pulmonary metastasis of murine melanoma. Biochem Biophys Res Commun 320(1):226–232PubMedCrossRefGoogle Scholar
  105. 105.
    Tamamura H, Fujisawa M, Hiramatsu K et al (2004) Identification of a CXCR4 antagonist, a T140 analog, as an anti-rheumatoid arthritis agent. FEBS Lett 569(1–3):99–104PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Anupriya Agarwal
    • 1
  • Thomas O’Hare
    • 2
  • Michael Deininger
    • 2
  1. 1.Division of Hematology and Medical OncologyOregon Health & Science University, Knight Cancer InstitutePortlandUSA
  2. 2.Division of Hematology and Hematologic Malignancies, Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUSA

Personalised recommendations