Skip to main content

Sol-Gel Materials for Carbon Mineral Sequestration

  • Chapter
  • First Online:
Sol-Gel Processing for Conventional and Alternative Energy

Part of the book series: Advances in Sol-Gel Derived Materials and Technologies ((Adv.Sol-Gel Deriv. Materials Technol.))

Abstract

Sol-gel technology was used to design a new, energetically efficient and economically viable CO2 sequestration technology. Calcium silicate grains were embedded into an inorganic silica matrix. These composites were used for the mineral sequestration of CO2; that is, for permanent carbon fixation. It was found that the mineral grains presented better carbonation efficiency when embedded into an inorganic porous silica matrix. The reaction by-products were calcite particles of a few microns and silica particles of a few tenths of nanometres in size. They could be recycled as raw materials for commercial processes, such as coatings and mortar, for example, depending on their morphology, purity, and particle size and on calculations of the total cost scenarios. Finally, sol-gel composites can also be tailored to capture other atmospheric gases, not just CO2, favouring the viability of this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IPCC Intergovernmental Panel on Climate Change Special Report (2005) Carbon dioxide capture and storage. Cambridge University Press, Cambridge

    Google Scholar 

  2. Carey JW, Wigand M, Chipera SJ, Woldegabriel G, Pawar R, Lichtner PC, Wehner SC, Raines MA, Guthrie GD Jr (2007) Analysis and performance of oil well cement with 30 years of CO2 exposure from the SACROC Unit, West Texas, USA. Int J Greenhouse Gas Control 1:75–85

    Article  Google Scholar 

  3. Fabbri A, Corvisier J, Schubnel A, Brunet F, Goffé B, Barlet-Gouédard V, Rimmele G (2009) Effect of carbonation on the hydro-mechanical properties of Portland cements. Cem Concrete Res 39(12):1156–1163

    Article  Google Scholar 

  4. Jaramillo P, Griffin WM, MCCoy ST (2009) Life cycle inventory of CO2 in an enhanced oil recovery system. Environ Sci Technol 43:8027–8032

    Article  Google Scholar 

  5. Lackner KS, Grimes P, Ziock HJ (2008) Capturing carbon dioxide froim air. 2nd US–China symposium on CO2 emission control science and technology, 28–30 May. Hangzou, China

    Google Scholar 

  6. Stolaroff JK, Keith WD, Lowry GV (2008) Carbon dioxide capture from atmospheric air using sodium hydroxide spray. Environ Sci Technol 42:2728–2735

    Article  Google Scholar 

  7. Morales-Flórez V, Santos A, Lemus A, Esquivias L (2011) Artificial weathering pools of calcium-rich industrial waste for CO2 sequestration. Chem Eng J 166(1):132–137

    Article  Google Scholar 

  8. CO2SINK Project. http://www.co2sink.org. Last visit: March, 2011

  9. GRASP project (2011) http://www.grasp-co2.eu. Last visit: March

  10. Hellevang H, Aagaard P, Oelkers EH, Kvamme B (2005) Can dawsonite permanently trap CO2. Environ Sci Technol 39(21):8281–8287

    Article  Google Scholar 

  11. Seifritz W (1990) CO2 disposal by means of silicates. Nature 345:486

    Article  Google Scholar 

  12. Lackner KS (2003) A guide to CO2 sequestration. Science 300:1677

    Article  Google Scholar 

  13. Sipila J, Teir S, Zevenhoven R (2008) Carbon dioxide sequestration by mineral carbonation. Literature review update 2005–2007, Heat Engineering Laboratory. Abo Akademi University, Turku

    Google Scholar 

  14. Inui T (1996) Highly effective conversion of carbon dioxide to valuable compounds on composite catalysts. Catal Today 29:329

    Article  MathSciNet  Google Scholar 

  15. Kojima T, Nagamine A, Ueno N, Uemiy S (1997) Absorption and fixation of carbon dioxide by rock weathering. Energy Convers Manag 38:461

    Article  Google Scholar 

  16. Wu JCS, Sheen JD, Chen SY, Fan Ch Y (2001) Feasibility of CO2 fixation via artificial rock weathering. Ind Eng Chem Res 40:3902

    Article  Google Scholar 

  17. Mckelvy MJ, Chizmeshya AVG, Diefenbacher J, Bearat H, Wolf G (2004) Exploration of the role of heat activation in enhancing serpentine carbon sequestration reactions. Enciron Sci Technol 38:6897

    Article  Google Scholar 

  18. Wolf GH, Chizmeshya AVG, Diefenbacher J, McKelvy MJ (2004) In situ observation of CO2 sequestration reactions using a novel microreaction system. Environ Sci Technol 38:932

    Article  Google Scholar 

  19. Huijgen WJJ, Comans RNJ (2006) Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process. Chem Eng Sci 61:4242–4251

    Article  Google Scholar 

  20. Zevenhoven R, Eloneva S, Teir S (2006) Chemical fixation of CO2 in carbonates: route to valuable products and long-term storage. Catal Today 115:73

    Article  Google Scholar 

  21. Kakizawa M, Yamasaki A, Yanagisawa Y (2001) A new CO2 disposal process via artificial weathering of calcium silicate accelerated by acetic acid. Energy 26:341–354

    Article  Google Scholar 

  22. O’Connor WK, Dahlin DC, Rush GE, Dahlin CL, Collins WK (2002) Carbon dioxide sequestration by direct mineral carbonation: process mineralogy of feed and products. Miner Metall Process 19:95

    Google Scholar 

  23. Tai CY, Chen WR, Shih SM (2006) Factors affecting wollastonite carbonation under CO2 supercritical conditions. AIChE J 52:292

    Article  Google Scholar 

  24. Béarat H, Mckelvy MJ, Chizmeshya AVG, Gormley D, Nunez R, Carpenter RW, Squires K, Wolf GH (2006) Carbon sequestration via aqueous olivine mineral carbonation: role of passivating layer formation. Environ Sci Technol 40:4802–4808

    Article  Google Scholar 

  25. Ahmed MS, Attia YA (1998) Multi-metal oxide aerogel for capture of pollution gases from air. App Thermal Eng 18:787–797

    Article  Google Scholar 

  26. Santos A, Toledo-Fernández JA, Mendoza-Serna R, Gago-Duport L, De la Rosa-Fox N, Piñero M, Esquivias L (2007) Chemically active silica-wollastonite composites for CO2 fixation by carbonation reactions. Ind Chem Eng 46:103–107

    Article  Google Scholar 

  27. Esquivias L, Piñero M, Morales-Flórez V, De la Rosa-Fox N (2011) Aerogels synthesis by sonocatalysis–sonogels. In: Aegerter M, Leventis N (eds) Handbook of aerogels. Springer, London To be published

    Google Scholar 

  28. Tarasevich M (1984) Ultrasonic hydrolysis of a metal alkoxide without alcohol solvents. Cer Bull 63:500 (Abstract only)

    Google Scholar 

  29. Boudjouk P (1986) Electrochemical and sonochemical routes to organosilane. Precursors. In: Hench LL, Ulrich DR (eds) Science of ceramics chemical processing. Wiley, New York, p 363

    Google Scholar 

  30. Price GJ, Hearn MP, Wallace ME, Patel AM (1996) Ultrasonically assisted synthesis and degradation of poly(dimethyl siloxane). Polymer 37:2303–2308

    Article  Google Scholar 

  31. Kistler SS (1932) Coherent and expanded aerogels. J Phys Chem 36(1):52

    Google Scholar 

  32. Blanco E, Esquivias L, Litrán R, Piñero M, Ramírez-del-Solar M, De la Rosa-Fox N (1999) Sonogels and derived materials. Appl Organomet Chem 13:399–418

    Article  Google Scholar 

  33. Santos A, Ajbary M, Kherbeche A, Piñero M, De la Rosa-Fox N, Esquivias L (2008) Fast CO2 sequestration by aerogel composites. J Sol-gel Sci Technol 45:291–297

    Article  Google Scholar 

  34. Santos A, Ajbary M, Toledo-Fernández JA, Morales-Florez V, Kherbeche A, Esquivias L (2008) Reactivity of CO2 traps in aerogel–wollastonite composites. J Sol-gel Sci Techol 48:224–230

    Article  Google Scholar 

  35. Morales-Flórez V, Santos A, Esquivias L (2011b) Recent insights into xerogel and aerogel mineral composites for CO2 mineral sequestration. J Sol-gel Sci Technol. Availabe doi: 10.1007/s10971-010-2276-8

  36. Santos A, Ajbary M, Morales-Florez V, Kherbeche A, Piñero M, Esquivias L (2009) Larnite powders and larnite/silica aerogel composites as effective agents for CO2 sequestration y carbonation. J Haz Mat 168:1397–1403

    Article  Google Scholar 

  37. Leal O, Bolivar C, Ovalles C, Garcia JJ, Espidel Y (1995) Reversible adsorption of carbon dioxide on amine surface-bonded silica gel. Inorg Chim Acta 240(1–2):183–189

    Article  Google Scholar 

  38. Song HK, Cho KW, Lee KH (1998) Adsorption of carbon dioxide on the chemically modified silica adsorbents. J Non-Cryst Solids 242:69–80

    Article  Google Scholar 

  39. Graham UM, Thomas G (1999) Chemically active aerogel-fly ash composites for mercury clean-up, international ash utilization symposium center for applied energy research. University of Kentucky, Kentucky

    Google Scholar 

  40. Reynolds JG, Coronado PR, Urbes LW (2001) Hydrophobic aerogels for oil-spill clean up synthesis and characterization. J Non-Cryst Solids 292:127

    Article  Google Scholar 

  41. Khomane RB, Sharma BK, Saha S, Kulkarni BD (2006) Reverse microemulsion mediated sol-gel synthesis of lithium silicate nanoparticles under ambient conditions: scope for CO2 sequestration. Chem Eng Sci 61(10):3415–3418

    Article  Google Scholar 

  42. Xomeritakis G, Tsai CY, Brinker CJ (2005) Microporous sol-gel derived aminosilicate membrane for enhanced carbon dioxide separation. Sep Purif Technol 42:249–257

    Article  Google Scholar 

  43. Chen C, Ahn WS (2011) CO2 capture using mesoporous alumina prepared by a sol-gel process. Chem Eng J 166:646–651

    Article  Google Scholar 

  44. Gupta H, Fan LS (2002) Carbonation-calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas. Ind Eng Chem Res 41:4035–4042

    Article  Google Scholar 

  45. Ahmed MS, Attia YA (1993) Sol-gel prepared aerogels for adsorption/capture of hazardous gases. First International Conference on Application Commercialization of Sol Gel Processing, Saarbrücken, Germany, October 10–13

    Google Scholar 

  46. Attia YA (1993) Capture of greenhouse gases by novel aerogel sorbents prepared by sol-gel technology. In: Parekh BK, Groppo JG (eds) Processing and utilization of high-sulfur coals V. Elsevier Science Publishers, B.V, pp 467–484

    Google Scholar 

  47. Nakagawa K, Ohashi T (1998) Novel method of CO2 capture from high temperature gases. J Electrochem Soc 145:1344–1346

    Article  Google Scholar 

  48. Yong Z, Mata V, Rodrigues AE (2002) Adsorption of carbon dioxide at high temperature—a review. Sep Purif Technol 26:195–205

    Article  Google Scholar 

  49. Prabhalar S, Hanumantha Kao R, Forsling W (2005) Dissolution of wollastonite and its flotation and surface interactions with tallow-1, 3-diaminopropane (duomeen T). Miner Eng 18:691

    Article  Google Scholar 

  50. Casey WH, Westrich HR, Banfield JF, Ferruzzi G, Arnold W (1993) Leaching and reconstruction at surfaces of dissolving chain silicate minerals. Nature 336:253

    Article  Google Scholar 

  51. Perez-Lopez R, Castillo J, Quispe D, Nieto JM (2009) Mineral sequestration of CO2 by aqueous carbonation of coal combustion fly-ash. J Hazard Mater 161:1347–1354

    Article  Google Scholar 

  52. Montes-Hernandez R, Perez-Lopez R, Renard F, Nieto JM, Charlet L (2009) Mineral sequestration of CO2 by aqueous carbonation of coal combustion fly-ash. J Hazard Mater 161:1347–1354

    Article  Google Scholar 

  53. Priggiobe V, Polettini A, Baciocchi R (2009) Gas–solid carbonation kinetics of air pollution control residues for CO2 storage. Chem Eng J 148:270–278

    Article  Google Scholar 

  54. Rendek E, Ducom G, Germain P (2006) Carbon dioxide sequestration in municipal solid waste incinerator (MSWI) bottom ash. J Hazard Mater B 128:73–79

    Article  Google Scholar 

  55. Huijgen WJ, Witkamp GJ, Comans RNJ (2005) Mineral CO2 sequestration by steel slag carbonation. Environ Sci Technol 39:9676–9682

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Ministerio de Ciencia e Investigación (Gobierno de España), who funded project CIT-440000-09-1 (Programa Nacional de Investigación Aplicada).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Esquivias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 © Springer Science+Business Media New York

About this chapter

Cite this chapter

Morales-Flórez, V., Esquivias, L., Santos, A. (2012). Sol-Gel Materials for Carbon Mineral Sequestration. In: Aparicio, M., Jitianu, A., Klein, L. (eds) Sol-Gel Processing for Conventional and Alternative Energy. Advances in Sol-Gel Derived Materials and Technologies. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1957-0_9

Download citation

Publish with us

Policies and ethics