Skip to main content

Hybrid Materials for High Ionic Conductivity

  • Chapter
  • First Online:
Book cover Sol-Gel Processing for Conventional and Alternative Energy

Part of the book series: Advances in Sol-Gel Derived Materials and Technologies ((Adv.Sol-Gel Deriv. Materials Technol.))

Abstract

Organic–inorganic hybrid materials are a blending of two components where at least one of them is at the nanoscale. The sol-gel process is an interesting method to synthesize these materials because it allows a wide variation in compositions and inorganic/organic ratios, together with an excellent control of porosity (volume, size and connectivity) and functional groups. These features enable the design of hybrid materials with high ion conductivity for different applications as electrolytes for proton exchange membranes fuel cells (PEMFC) and lithium ion batteries. Two of the main constraints of PEMFC are the operation conditions, limited to maximum temperatures of 80°C and relative humidity near 100%. Increasing of operation temperature above 100°C is a highly desirable goal because it increases the electrochemical kinetics, improves CO tolerance, facilitates heat rejection, and reduces the problems associated with water management. Although some of the properties have been achieved separately, no system has been able to gather all the necessary requirements. In the case of application of hybrid materials as solid electrolytes for lithium ion batteries, the ion conductivity is only slightly improved compared with poly(ethylene oxide)-based polymer electrolytes and still far from values of organic liquids. Besides, in the field of microbatteries, the electrolyte thickness can be as low as one micron, and, in this configuration, ionic conductivities of 10−5 S/cm or higher would be enough for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yamada A, Sasabe H, Osada Y, Shiroda Y, Yamamoto I (1989) Concepts of hybrid materials, hybrid materials—concept and case studies. ASM International, Ohio

    Google Scholar 

  2. Makisima A (2004) Possibility of hybrids materials. Cers Japan 39:90–91

    Google Scholar 

  3. Gómez-Romero P, Sanchez C (2004) Functional hybrid materials. Wiley, New York

    Google Scholar 

  4. Materials Science Society of Japan (1993) Molecular hybridization and hybrid materials, composite system in materials. Shokabo Publishing, Tokyo

    Google Scholar 

  5. Suyama Y (2004) Research and development of organic–inorganic nanohybrids materials. Ceram Japan 39:92–93

    Google Scholar 

  6. Hoogers G (2003) Fuel cell technology handbook. CRC Press, USA

    Google Scholar 

  7. Ananthachar V, Duffy JJ (2005) Efficiencies of hydrogen storage systems onboard fuel cell vehicles. Sol Energy 78:687–694

    Article  Google Scholar 

  8. Larminie J, Dicks A (2003) Fuel cell systems explained. Wiley, New York

    Google Scholar 

  9. Lassegues JC (1992) Proton conductors: solids, membranes and gels—materials and devices. Cambridge University Press, Cambridge

    Google Scholar 

  10. Srinivasan S (2001) Fuel cells: from fundamentals to applications. Springer, USA

    Google Scholar 

  11. Lee JH, Lalk TR (1998) Modeling fuel cell stack systems. J Power Sources 73:229–241

    Article  Google Scholar 

  12. Gottesfeld S, Zawodzinski T (1997) Advance in electrochemical science and engineering. Wiley, USA

    Google Scholar 

  13. Cacciola G, Antonucci V, Freni S (2001) Technology up date and new strategies on fuel cells. J Power Sources 100:67–79

    Article  Google Scholar 

  14. Barbir F, Gomez T (1996) Efficiency and economics of proton exchange membrane (PEM) fuel cells. Int J Hydrogen Energy 21:891–901

    Article  Google Scholar 

  15. Wee JH (2007) Applications of proton exchange membrane fuel cell systems. Ren Sust Energy Rev 11:1720–1738

    Article  Google Scholar 

  16. Costamagna P, Srinivasan S (2001) Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000 Part II. Engineering, technology, development and application aspects. J Power Sources 102:253–269

    Article  Google Scholar 

  17. Gamburzev S, Appleby AJ (2002) Recent progress in performance improvement of the proton exchange membrane fuel cell (PEMFC). J Power Sources 107:5–12

    Article  Google Scholar 

  18. Heitner-Wirguin C (1996) Recent advances in perfluorinated ionomer membranes: structure, properties and applications. J Memb Sci 120:1–9

    Article  Google Scholar 

  19. Pourcely G, Gavach C (1992) Proton conductors, solids, membranes and gels-materials and devices. Cambridge Univ Press, New York

    Google Scholar 

  20. Savadogo O (1998) Electrolyte membranes for fuel cell systems. J New Mater Electrochem Syst 1:47–55

    Google Scholar 

  21. Mauritz KA, Moore RB (2004) State of understanding of Nafion. Chem Rev 104:4535–4585

    Article  Google Scholar 

  22. Noble RD, Stern SA (1995) Membrane separations technology principles and applications. Elsevier, Amsterdam

    Google Scholar 

  23. Thampan TM (2005) Systematic approach to design higher temperature composite PEMs. J Electrochem Soc 152:A316–A325

    Article  Google Scholar 

  24. Hickner MA, Pivovar BS (2005) The chemical and structural nature of proton exchange membrane fuel cell properties. Fuel Cells 5:213–229

    Article  Google Scholar 

  25. Tani J, Takagi T, Qiu J (1998) Intelligent material systems: application of functional materials. Appl Mech Rev 51:505–521

    Article  Google Scholar 

  26. Kerres JA (2001) Development of ionomer membranes for fuel cells. J Memb Sci 185:3–27

    Article  Google Scholar 

  27. Alberti G (2005) New preparation methods for composite membranes for medium temperature fuel cells based on precursor solutions of insoluble inorganic compounds. Fuel Cells 5:366–374

    Article  MathSciNet  Google Scholar 

  28. Neburchilov V, Martin J, Wang H, Zhang J (2007) A review of polymer electrolyte membranes for direct methanol fuel cells. J Power Sources 169:221–238

    Article  Google Scholar 

  29. Iojoiu C, Chabert F, Marechal M, Kissi NE, Guindet J, Sanchez JY (2006) From polymer chemistry to membrane elaboration. A global approach of fuel cell polymeric electrolytes. J Power Sources 153:198–209

    Article  Google Scholar 

  30. Yang C, Costamagna P, Srinivasan S, Benziger J, Bocarsly AB (2001) Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells. J Power Sources 103:1–9

    Article  Google Scholar 

  31. Curtin DE (2004) Advanced materials for improved PEMFC performance and life. J Power Sources 131:41–48

    Article  Google Scholar 

  32. Nunes SP, Schultz J, Peinemann KV (1996) Silicone membranes with silica nanoparticles. J Mater Sci Lett 151:139–1141

    Google Scholar 

  33. Malhotra S, Datta R (1997) Membrane-supported nonvolatile acidic electrolytes allow higher temperature operation of proton-exchange membrane fuel cells. J Electrochem Soc 144:L23–L26

    Article  Google Scholar 

  34. Antonucci PL, Aricò AS, Cretì P, Ramunni E, Antonucci V (1999) Investigation of a direct methanol fuel cell based on a composite Nafion-silica electrolyte for high temperature operation. Solid State Ion 125:431–437

    Article  Google Scholar 

  35. Maurizt KA (1998) Organic-inorganic hybrid materials: perfluorinated ionomers as sol-gel polymerization templates for inorganic alkoxides. Mat Sci Eng C6:121–133

    Google Scholar 

  36. Adjemian KT, Srinivasan S, Benziger J, Bocarsly AB (2002) Investigation of PEMFC operation above 100°C employing perfluorosulfonic acid silicon oxide composite membranes. J Power Sources 109:356–364

    Article  Google Scholar 

  37. Klein LC, Daiko Y, Aparicio M, Damay F (2005) Methods for modifying proton exchange membranes using the sol-gel process. Polymer 46:4504–4509

    Article  Google Scholar 

  38. Aparicio M, Damay F, Klein LC (2003) Characterization of SiO2–P2O5–ZrO2 sol-gel/NafionTM composite membranes. J Sol-Gel Sci Techn 26:1055–1059

    Article  Google Scholar 

  39. Tazi B, Savadogo O (2001) Effect of various heteropolyacids (HPAs) on the characteristics of Nafion®–HPAS membranes and their H2/O2 polymer electrolyte fuel cell parameters. J New Mat Electrochem Syst 4:187–196

    Google Scholar 

  40. Staiti P, Freni S, Hocevar S (1999) Synthesis and characterization of proton-conducting materials containing dodecatungstophosphoric and dodecatungstosilic acid supported on silica. J Power Sources 79:250–255

    Article  Google Scholar 

  41. Jung DH, Cho SY, Peck DH, Shin DR, Kim JS (2003) Preparation and performance of a Nafion®/montmorillonite nanocomposite membrane for direct methanol fuel cell. J Power Sources 118:205–211

    Article  Google Scholar 

  42. Costamagna P, Yang C, Bocarsly AB, Srinivasan S (2002) Nafion®115/zirconium phosphate composite membranes for operation of PEMFCs above 100°C. Electrochim Acta 47:1023–1033

    Article  Google Scholar 

  43. Yang C, Srinivasan S, Aricò AS, Cretì P, Baglio V, Antonucci V (2001) Composite Nafion/zirconium phosphate membranes for direct methanol fuel cell operation at high temperature. Electrochem Solid-State Lett 4:A31–A34

    Article  Google Scholar 

  44. Miyake N, Wainright JS, Savinell RF (2001) Evaluation of a Sol-Gel derived Nafion/Silica hybrid membrane for proton electrolyte membrane fuel cell applications: I. Proton conductivity and water content. J Electrochem Soc 148:A898–A904

    Article  Google Scholar 

  45. Laberty-Rober C, Vallé TK, Pereira F, Sanchez C (2011) Design and properties of functional hybrid organic–inorganic membranes for fuel cells. Chem Soc Rev 40:961–1005

    Article  Google Scholar 

  46. Pereira F, Vallé K, Belleville P, Morin A, Lambert S, Sanchez C (2008) Advanced mesostructured hybrid Silica–Nafion membranes for high-performance PEM fuel cell. Chem Mater 20:1710–1718

    Article  Google Scholar 

  47. Dupuis AC (2011) Proton exchange membranes for fuel cells operated at medium temperatures: materials and experimental techniques. Prog Mater Sci 56:289–327

    Article  Google Scholar 

  48. Aparicio M, Klein LC (2005) Synthesis and characterization of Nafion/60SiO2–30P2O5–10ZrO2 sol-gel composite membranes for PEMFCs. J Electrochem Soc 152:A493–A496

    Article  Google Scholar 

  49. Holmberg BA, Hwang SJ, Davis ME, Yan YS (2005) Synthesis and proton conductivity of sulfonic acid functionalized zeolite BEA nanocrystals. Micro Mesoporous Mater 80:347–356

    Article  Google Scholar 

  50. Alabi CA, Davis ME (2006) Proton-conducting solid electrolyte via ozonolysis of cationic ammonium organoalkoxysilane surfactant-templated MCM-41. Chem Mater 18:5634–5636

    Article  Google Scholar 

  51. Fuller T, Hartnig C, Ramani V, Uchida H, Gasteiger H, Cleghorn S, Strasser P, Zawodzinski T, Jones D, Shirvanian P, Jarvi T, Zelenay P, Lamy C, Bele P (2009) Proton exchange membrane fuel cells 9. In: Hartnig C, Ramani V, Uchida H, Gasteiger H, Cleghorn S, Strasser P, Zawodzinski T, Jones D, Shirvanian P, Jarvi T, Zelenay P, Lamy C, Bele P (eds) The electrochemical society transactions. ECS, USA

    Google Scholar 

  52. Sahul AK, Pitchumani S, Sridhar P, Shukla AK (2009) Co-assembly of a Nafion–Mesoporous Zirconium Phosphate composite membrane for PEM fuel cells. Fuel Cells 9:139–147

    Article  Google Scholar 

  53. Chai Z, Dong D, Wang C, Zhang H, Webley PA, Zhao D, Wang H (2010) Nanoporous niobium phosphate electrolyte membrane for low temperature fuel cell. J Memb Sci 356:147–153

    Article  Google Scholar 

  54. Ogoshi T, Kim KM, Chujo Y (2005) Synthesis of anionic polymer–silica hybrids by controlling pH in an aqueous solution. J Mater Chem 13:2202–2207

    Article  Google Scholar 

  55. Posudievsky OY, Telbiz GM, Rossokhaty VK (2006) Effect of solvent nature on liquid-phase self-assembly of MEH-PPV/MCM-41 guest–host composites. J Mater Chem 16:2485–2489

    Article  Google Scholar 

  56. Kreuer KD, Paddison SJ, Spohr E, Schuster M (2004) Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. Chem Rev 104:4637–4678

    Article  Google Scholar 

  57. Wainright JS, Wang JT, Weng D, Savinell RF, Litt MH (1995) Acid-doped polybenzimidazoles: a new polymer electrolyte. J Electrochem Soc 142:L121–L123

    Article  Google Scholar 

  58. Kreuer KD, Fuchs A, Ise M, Spaeth M, Maier M (1998) Imidazole and pyrazole-based proton conducting polymers and liquids. Electrochim Acta 43:1281–1288

    Article  Google Scholar 

  59. Yang C, Costamagna P, Srinivasan S, Benziger J, Bocarsly AB (2001) Water uptake and conductivity of composite membranes operating at reduced relative humidity. J Power Sources 103:1–9

    Article  Google Scholar 

  60. Kreuer KD (1996) Proton conductivity: materials and applications. Chem Mater 8:610–641

    Article  Google Scholar 

  61. Sekhon SS, Krishnan P, Singh B, Yamada K, Kim CS (2009) Morphology studies of high temperature proton conducting membranes containing hydrophilic/hydrophobic ionic liquids. Macromolecules 42:2054–2062

    Article  Google Scholar 

  62. Nakamoto H, Akihiro N, Hayamizu K, Hayashi S, Hamaguchi H, Masayoshi W (2007) Proton-conducting properties of a bronsted acid-base ionic liquid and ionic melts consisting of Bis(Trifluoromethanesulfonyl)Imide and Benzimidazole for fuel cell electrolytes. J Phys Chem C 111:1541–1548

    Article  Google Scholar 

  63. Sanchez C, Popall M, Julian B, Belleville P (2005) Applications of hybrid organic–inorganic nanocomposites. J Mater Chem 15:3559–3592

    Article  Google Scholar 

  64. Sanchez C, Soler-Illia GJAA, Ribot F, Lalot T, Mayer CR, Cabuil V (2001) Designed hybrid organic–inorganic nanocomposites from functional nanobuilding blocks. Chem Mater 13:3061–3085

    Article  Google Scholar 

  65. Shea KJ, Loy DA, Webster O (1992) Arylsilsesquioxane gels and related materials new hybrids of organic and inorganic networks. J Am Chem Soc 114:6700–6710

    Article  Google Scholar 

  66. Aparicio M, Mosa J, Durán A (2006) Hybrid organic–inorganic nanostructured membranes for high temperature proton exchange membranes fuel cells (PEMFC). J Sol-Gel Sci Tech 40:309–315

    Article  Google Scholar 

  67. Arfat A, Banthia AK, Bandyopadhyay S (2008) Synthesis and characterization of polyvinyl alcohol copolymer/phosphomolybdic acid based crosslinked composite polymer electrolyte membranes. J Power Sources 179:69–80

    Article  Google Scholar 

  68. Lin CW, Thangamuthu R, Yang CJ (2005) Proton-conducting membranes with high selectivity from phosphotungstic acid-doped poly(vinyl alcohol) for DMFC applications. J Membr Sci 253:23–31

    Article  Google Scholar 

  69. Liu YL, Su YH, Lai JY (2004) In situ crosslinking of chitosan and formation of chitosan–silica hybrid membranes with using γ-glycidoxypropyltrimethoxysilane as a crosslinking agent. Polymer 45:6831–6837

    Article  Google Scholar 

  70. Kulkarni SS, Kittur AA, Aralaguppi MI, Kariduraganavar MY (2004) Synthesis and characterization of hybrid membranes using poly(vinyl alcohol) and Tetraethylorthosilicate for the pervaporation separation of water–isopropanol mixtures. J Appl Pol Sci 94:1304–1315

    Article  Google Scholar 

  71. Tezuka T, Tadanaga K, Matsuda A, Hayashi A, Tatsumisago M (2005) Utilization of glass paper as a support of protonconductive inorganic–organic hybrid membranes based on 3-glycidoxypropyltrimethoxysil. Electrochem Comm 7:245–248

    Article  Google Scholar 

  72. Jacob S, Poinsignon C, Popall M (2005) Inorganic–organic hybrid protonic polymeric materials for fuel cells based on polycondensed and organically cross-linked sulfonyl- and styrene-functionalized alkoxysilagnes. Electrochim Acta 50:4022–4028

    Article  Google Scholar 

  73. Park Y, Nagai M (2001) Proton exchange nanocomposite membranes based on 3-glycidoxypropyltrimethoxysilane, silicotungstic acid and α-zirconium phosphate hydrate. Solid State Ion. 145:149–160

    Article  Google Scholar 

  74. Chen WF, Kuo PL (2007) Covalently cross-linked perfluorosulfonated membranes with polysiloxane framework. Macromolecules 40:1987–1994

    Article  Google Scholar 

  75. Je-D Kim, Mori T, Honma I (2006) Organic–inorganic hybrid membranes for a PEMFC operation at intermediate temperatures. J Electrochem Soc 153:A508–A514

    Article  Google Scholar 

  76. Schwab JJ, Lichtenhan JD (1998) Polyhedral oligomeric silsesquioxane (POSS)-based polymers. Appl Organometal Chem 12:707–713

    Article  Google Scholar 

  77. Bonis CD, D’epifanio A, Di Vona ML, Mecheri B, Traversa E, Trombetta M, Licoccia S (2010) Proton conducting electrolytes based on silylated and sulfonated polyetheretherketone: synthesis and characterization. J Polym Sci 48:2178–2186 Part A: Polym Chem.

    Google Scholar 

  78. Aparicio M, Lecoq E, Castro Y, Durán A (2005) Proton conducting organic/inorganic sol-gel membranes produced from phenyltriethoxysilane and 3-methacryloxypropyl trimethoxysilane. J Sol-Gel Sci Tech 34:233–239

    Article  Google Scholar 

  79. Aparicio M, Castro Y, Durán A (2005) Synthesis and characterisation of proton conducting styrene-co-methacrylate/silica sol-gel membranes containing tungstophosphoric acid. Solid State Ion 176:333–340

    Article  Google Scholar 

  80. Mosa J, Durán A, Aparicio M (2010) Epoxy-polystyrene-silica sol-gel membranes with high proton conductivity at low relative humidity by combination of sulfonation and tungstophosphoric acid doping. J Memb Sci 361:135–142

    Article  Google Scholar 

  81. Smith JJ, Zharov I (2009) Preparation and proton conductivity of sulfonated polymer-modified sintered and self-assembled silica colloidal crystals. Chem Mater 21:2013–2019

    Article  Google Scholar 

  82. Sel O, Soulès A, Améduri B, Boutevin B, Laberty-Robert Ch, Gebel G, Sanchez C (2010) Original fuel-cell membranes from crosslinked terpolymers via a “sol–gel” strategy. Adv Funct Mater 20:1090–1098

    Article  Google Scholar 

  83. Kim JD, Mori T, Honma I (2004) Proton conducting polydimethylsiloxane/metal oxide hybrid membranes added with phosphotungstic acid(II). Electrochim Acta 49:3429–3433

    Article  Google Scholar 

  84. Sel O, Laberty-Robert Ch, Azais T, Sanchez C (2009) Designing meso- and macropore architectures in hybrid organic–inorganic membranes by combining surfactant and breath figure templating (BFT). Phys Chem Chem Phys 11:3733–3741

    Article  Google Scholar 

  85. Choi J, Lee KM, Wycisk R, Pintauro PN, Mather PT (2008) Nanofiber network ion-exchange membranes. Macromolecules 41:4569–4572

    Article  Google Scholar 

  86. Choi J, Lee KM, Wycisk R, Pintauro PN, Mather PT (2008) Membranes for PEM fuel cells. J Electrochem Soc 157:B914–B919

    Article  Google Scholar 

  87. Dokko K, Sugaya J, Nakano H, Yasukawa T, Matsue T, Kanamura K (2007) Sol–gel fabrication of lithium-ion microarray battery. Electrochem Commun 9:857–862

    Article  Google Scholar 

  88. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603

    Article  Google Scholar 

  89. Liu Y, Lee JY, Hong L (2003) Morphology, crystallinity, and electrochemical properties of in situ formed poly(ethylene oxide)/TiO2 nanocomposite polymer electrolytes. J Appl Polym Sci 89:2815–2822

    Article  Google Scholar 

  90. Walls HJ, Zhou J, Yerian JA, Fedkiw PS, Khan SA, Stowe MK, Baker GL (2000) Fumed silica-based composite polymer electrolytes: synthesis, rheology, and electrochemistry. J Power Sources 89:156–162

    Article  Google Scholar 

  91. Kim DW (1998) Electrochemical characteristics of a carbon electrode with gel polymer electrolyte for lithium-ion polymer batteries. J Power Sources 76:175–179

    Article  Google Scholar 

  92. Lee KH, Lee YG, Park JK, Seung DY (2000) Effect of silica on the electrochemical characteristics of the plasticized polymer electrolytes based on the P(AN-co-MMA) copolymer. Solid State Ion 133:257–263

    Article  Google Scholar 

  93. Walcarius A (2001) Electrochemical applications of silica-based organic-inorganic hybrid materials. Chem Mater 13:3351–3372

    Article  Google Scholar 

  94. Skaarup S, West K, Zachau-Christiansen B, Popall M, Kappel J, Kron J, Eichinger G, Semrau G (1998) Towards solid state lithium batteries based on ORMOCER electrolytes. Electrochim Acta 43:1589–1592

    Article  Google Scholar 

  95. Popall M, Duband H (1992) Inorganic-organic copolymers as solid state Li+ electrolytes. Electrochim Acta 37:1593–1597

    Article  Google Scholar 

  96. Popall M, Andrei M, Kappel J, Kron J, Olma K, Olsowski B (1998) ORMOCERs as inorganic–organic electrolytes for new solid state lithium batteries and supercapacitors. Electrochim Acta 43:1155–1161

    Article  Google Scholar 

  97. Popall M, Buestrich R, Semrau G, Eichinger G, Andrei M, Parker WO, Skaarup S, West K (2001) New polymer lithium secondary batteries based on ORMOCER® electrolytes inorganic–organic polymers. Electrochim Acta 46:1499–1508

    Article  Google Scholar 

  98. Popall M, Du XM (1995) Inorganic–organic copolymers as solid state ionic conductors with grafted anions. Electrochim Acta 40:2305–2308

    Article  Google Scholar 

  99. Dahmouche K, Atik M, Mello NC, Bonagamba TJ, Panepucci H, Aegerter MA, Judeinstein P (1997) Investigation of new ion-conducting ORMOLYTES: structure and properties. J Sol-Gel Sci Technol 8:711–715

    Google Scholar 

  100. Dahmouche K, Atik M, Mello NC, Bonagamba TJ, Panepucci H, Judeinstein P, Aegerter MA (1998) New Li+ ion-conducting ORMOLYTEs. Sol Energy Mater Sol Cells 54:1–8

    Article  Google Scholar 

  101. Nishio K, Okubo K, Watanabe Y, Tsuchiya T (2000) Structural analysis and properties of organic-inorganic hybrid ionic conductor prepared by sol-gel process. J Sol-Gel Sci Technol 19:187–191

    Article  Google Scholar 

  102. Liu Y, Lee JY, Hong L (2004) In situ preparation of poly(ethylene oxide)–SiO2 composite polymer electrolytes. J Power Sources 129:303–311

    Article  Google Scholar 

  103. Souza FL, Bueno PR, Longo E, Leite ER (2004) Sol–gel nonhydrolytic synthesis of a hybrid organic–inorganic electrolyte for application in lithium-ion devices. Solid State Ion 166:83–88

    Article  Google Scholar 

  104. Lee JK, Lee YJ, Chae WS, Sung YM (2006) Enhanced ionic conductivity in PEO-LiClO4 hybrid electrolytes by structural modification. J Electroceram 17:941–944

    Article  Google Scholar 

  105. Tigelaar DM, Meador MAB, Kinder JD, Bennett WR (2006) New APTES cross-linked polymers from poly(ethylene oxide)s and cyanuric chloride for lithium batteries. Macromolecules 39:120–127

    Article  Google Scholar 

  106. Tigelaar DM, Meador MAB, Bennett WR (2007) Composite electrolytes for lithium batteries: ionic liquids in APTES cross-linked polymers. Macromolecules 40:4159–4164

    Article  Google Scholar 

  107. Derrien G, Hassoun J, Sacchetti S, Panero S (2009) Nanocomposite PEO-based polymer electrolyte using a highly porous, super acid zirconia filler. Solid State Ion 180:1267–1271

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Spanish Science and Innovation Ministry under National Program ACI-PLAN E (project PLE2009-0074) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Aparicio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 © Springer Science+Business Media New York

About this chapter

Cite this chapter

Mosa, J., Aparicio, M. (2012). Hybrid Materials for High Ionic Conductivity . In: Aparicio, M., Jitianu, A., Klein, L. (eds) Sol-Gel Processing for Conventional and Alternative Energy. Advances in Sol-Gel Derived Materials and Technologies. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1957-0_6

Download citation

Publish with us

Policies and ethics