Skip to main content

Proton Exchange Membranes for H2 Fuel Cell Applications

  • Chapter
  • First Online:
Book cover Sol-Gel Processing for Conventional and Alternative Energy

Part of the book series: Advances in Sol-Gel Derived Materials and Technologies ((Adv.Sol-Gel Deriv. Materials Technol.))

Abstract

This chapter presents studies of sol-gel modifications of perfluorinated and hydrocarbon H2 fuel cell membranes using metal alkoxides, organoalkoxysilanes and combinations of these monomers. The impacts of these modifications on proton conductivity at high temperature and low relative humidity, fuel cell performance, chemical and mechanical durability and H2 and O2 crossover are discussed. Methods of tailoring the energetic environment, or polarity, within the polar cluster domains by insertion of inorganic oxide or organically modified silicate nanostructures by different chemistry routes are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vielstich W, Gasteiger HA, Lamm A (2003) Handbook of fuel cells—fundamentals, technology and applications. Wiley, Chichester

    Google Scholar 

  2. Souzy R, Ameduri B (2005) Functional fluoropolymers for fuel cell membranes. Prog Polym Sci 30:644–687

    Article  Google Scholar 

  3. Cho KY, Jung HY, Sung KA, Kim WK, Sung SJ, Park JK, Choi JH, Sung YE (2006) Preparation and characteristics of Nafion membrane coated with a PVdF copolymer/recast Nafion blend for direct methanol fuel cell. J Power Sources 159:524–528

    Article  Google Scholar 

  4. Yamauchi A, Ito T, Yamaguchi T (2007) Low methanol crossover and high performance of DMFCs achieved with a pore-filling polymer electrolyte membrane. J Power Sources 174:170–175

    Article  Google Scholar 

  5. Mauritz KA, Moore RB (2004) State of understanding of Nafion. Chem Rev 104:4535–4585

    Article  Google Scholar 

  6. Kundu S, Simon LC, Fowler M, Grot S (2005) Mechanical properties of Nafion™ electrolyte membranes under hydrated conditions. Polymer 46:11707–11715

    Article  Google Scholar 

  7. Huang X, Solasi R, Zou Y et al (2006) Mechanical endurance of polymer electrolyte membrane and PEM fuel cell durability. J Polym Sci Polym Phys 44:2346–2357

    Article  Google Scholar 

  8. Schiraldi DA (2006) Perfluorinated polymer electrolyte membrane durability. J Macromol Sci, Polym Rev 46:315–327

    Article  Google Scholar 

  9. Liu W, Crum M (2006) Effective testing matrix for studying membrane durability in PEM fuel cells: Part I. Chemical durability. ECS Trans 3:531–540

    Article  Google Scholar 

  10. Crum M, Liu W (2006) Effective testing matrix for studying membrane durability in PEM fuel cells: Part II. Mechanical durability and combined mechanical and chemical durability. ECS Trans 3:541–550

    Article  Google Scholar 

  11. Patil YP, Jarrett WL, Mauritz KA (2010) Deterioration of mechanical properties: a cause for fuel cell membrane failure. J Membr Sci 356:7–13

    Article  Google Scholar 

  12. Hickner MA, Ghassemi H, Kim YS, Einsla BR, McGrath JE (2004) Alternative polymer systems for proton exchange membranes (PEMs). Chem Rev 104:4587–4612

    Article  Google Scholar 

  13. Doyle M, Rajendran G (2003) In: Vielstich W, Gasteiger HA, Lamm A (eds) Handbook of fuel cells—fundamentals, technology and applications, vol 3. Wiley, Chichester, p 447

    Google Scholar 

  14. Wang S, McGrath JE (2003) Synthesis of poly(arylene ether)s. In: Synthetic methods in step growth polymers, Wiley, New York, p 327

    Google Scholar 

  15. Poppe D, Frey H, Kreuer KD, Heinzel A, Mulhaupt R (2002) Carboxylated and sulfonated poly(arylene-co-arylene sulfone)s: thermostable polyelectrolytes for fuel cell applications. Macromolecules 35:7936–7941

    Article  Google Scholar 

  16. Wang F, Hickner M, Kim YS, Zawodzinski TA, McGrath JE (2002) Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes. J Membr Sci 197:197–231

    Article  Google Scholar 

  17. Nolte R, Ledjeff K, Bauer B, Mülhaupt R (1993) Partially sulfonated poly(arylene ether sulfone)—a versatile proton conducting membrane material for modern energy conversion technologies. J Membr Sci 83:211–220

    Article  Google Scholar 

  18. Rozière J, Jones DJ (2003) Non-fluorinated polymer materials for proton echange membrane fuel cells. Annu Rev Mater Res 33:503–555

    Article  Google Scholar 

  19. Alberti G, Casciola M, Massinelli L, Bauer B (2001) Polymeric proton conducting membranes for medium temperature fuel cells (110–160°C). J Membr Sci 185:73–81

    Article  Google Scholar 

  20. Zaidi SM, Mikhailenko SD, Robertson GP, Guiver MD, Kaliaguine S (2000) Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications. J Membr Sci 173:17–34

    Article  Google Scholar 

  21. Fang J, Guo X, Kita H et al (2002) Novel sulfonated polyimides as polyelectrolytes for fuel cell application. 1. Synthesis, proton conductivity, and water stability of polyimides from 4, 4‘-diaminodiphenyl ether-2, 2‘-disulfonic acid. Macromolecules 35:9022–9028

    Article  Google Scholar 

  22. Genies C, Mercier R, Sillion B, Cornet N, Gebel G, Pineri M (2001) Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes. Polymer 42:359–373

    Article  Google Scholar 

  23. Hench LL, West JK (1990) The sol-gel process. Chem Rev 90:33–72

    Article  Google Scholar 

  24. Hench LL, Ulrich DR (1984) Ultrastructure processing of ceramics, glasses and coposites. Wiley, New York

    Google Scholar 

  25. Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press Inc, New York

    Google Scholar 

  26. Jones DJ, Rozière J (2003) In: Vielstich W, Gasteiger HA, Lamm A (eds) Handbook of fuel cells—fundamentals, technology and applications, vol 3. Wiley, Chichester, p 447

    Google Scholar 

  27. Alberti G, Casciola M (2003) Composite membranes for medium-temperature PEM fuel cells. Annu Rev Mater Res 33:129–154

    Article  Google Scholar 

  28. Klein LC, Daiko Y, Aparicio M, Damay F (2005) Methods for modifying proton exchange membranes using the sol-gel process. Polymer 46:4504–4509

    Article  Google Scholar 

  29. Klein LC (2009) Sol-gel process for proton exchange membranes. Key Eng Mater 391:159–168

    Article  Google Scholar 

  30. Jones DJ, Rozière J (2008) Advances in the development of inorganic-organic membranes for fuel cell applications. Adv Polym Sci 215:219–264

    Google Scholar 

  31. Klein LC (2002) Opportunities for sol-gel materials in fuel cells. Mater Sci 20:81–93

    Google Scholar 

  32. Mauritz KA, Hassan MK (2007) Nanophase separated perfluorinated ionomers as sol-gel polymerization templates for functional inorganic oxide nanoparticles. Polym Rev 47:543–565

    Article  Google Scholar 

  33. Mauritz KA, Mountz DA, Reuschle DA, Storey DA (1999) Organic/inorganic nanocomposites as potential fuel cell membranes. In: Martin CW, Desmarteau DD (eds) Proc DOD workshop on advanced PEM fuel cell membranes and membrane-electrode assemblies for non-conventional fuels. Clemson University Press, Las Vegas, p 304

    Google Scholar 

  34. Mauritz KA (1999) Nanophase separated ionomers as sol-gel polymerization templates for inorganic alkoxides: applications as proton conducting membranes, conference on electroactive membranes: from fundamentals to applications, Monte Verita, Switzerland

    Google Scholar 

  35. Mauritz KA, Stefanithis ID, Davis SV, Scheetz RW, Pope RK, Wilkes GL, Huang HH (1995) Microstructural evolution of a silicon oxide phase in a perfluorosulfonic acid ionomer by an in situ sol-gel reaction. J Appl Polym Sci 55:181–190

    Article  Google Scholar 

  36. Deng Q, Cable KM, Moore RB, Mauritz KA (1996) Small-angle X-ray scattering studies of Nafion®/[silicon oxide] and Nafion®/ORMOSIL nanocomposites. J Polym Sci Polym Phys 34:1917–1923

    Article  Google Scholar 

  37. Mauritz KA, Warren RM (1989) Microstructural evolution of a silicon oxide phase in a perfluorosulfonic acid ionomer by an in situ sol-gel reaction. 1. Infrared spectroscopic studies. Macromolecules 22:1730–1734

    Article  Google Scholar 

  38. Gummaraju RV, Moore RB, Mauritz KA (1996) Asymmetric [Nafion®]/[silicon oxide] hybrid membranes via in situ sol-gel reaction for tetraethoxysilane. J Polym Sci Polym Phys 34:2383–2392

    Article  Google Scholar 

  39. Mauritz KA, Storey RF, Jones CK (1989) Perfluorinated-ionomer-membrane-based micro-composites. Silicon oxide filled membranes. In: Utracki LA, Weiss RA (eds) Multiphase polymer materials: blends, ionomers and interpenetrating networks. ACS Symp Ser 395, Washington, DC, p 401

    Google Scholar 

  40. Deng Q, Wilkie CA, Moore RB, Mauritz KA (1998) TGA-FTi r investigation of the thermal degradation of nafion® and nafion®/[silicon oxide]-based nanocomposites. Polymer 39:5961–5972

    Article  Google Scholar 

  41. Deng Q, Moore RB, Mauritz KA (1998) Nafion®/(SiO2, ORMOSIL, and dimethylsiloxane) hybrids via in situ sol–gel reactions: characterization of fundamental properties. J Appl Polym Sci 68:747–763

    Article  Google Scholar 

  42. Mauritz KA, Payne JT (2000) [Perfluorosulfonate ionomer]/silicate hybrid membranes via base-catalyzed in situ sol–gel processes for tetraethylorthosilicate. J Membr Sci 168:39–51

    Article  Google Scholar 

  43. Jung DH, Cho SY, Peck DH, Shin DR, Kim JS (2002) Performance evaluation of a Nafion/silicon oxide hybrid membrane for direct methanol fuel cell. J Power Sources 106:173–177

    Article  Google Scholar 

  44. Miyake N, Wainright JS, Savinell RF (2001) Evaluation of a sol-gel derived Nafion/silica hybrid membrane for polymer electrolyte membrane fuel cell applications. II. methanol uptake and methanol permeability. J Electrochem Soc 148:A905–A909

    Article  Google Scholar 

  45. Adjemian KT, Lee SJ, Srinivasan S, Benziger J, Bocarsly AB (2002) Silicon oxide Nafion composite membranes for proton-exchange membrane fuel cell operation at 80–140°C. J Electrochem Soc 149:A256–A261

    Article  Google Scholar 

  46. Adjemian KT, Srinivasan S, Benziger J, Bocarsly AB (2002) Investigation of PEMFC operation above 100°C employing perfluorosulfonic acid silicon oxide composite membranes. J Power Sources 109:356–364

    Article  Google Scholar 

  47. Jiang R, Kunz HR, Fenton JM (2006) Composite silica/Nafion® membranes prepared by tetraethylorthosilicate sol–gel reaction and solution casting for direct methanol fuel cells. J Membr Sci 272:116–124

    Article  Google Scholar 

  48. Antonucci PL, Aricò AS, Cretì P, Ramunni E, Antonucci V (1999) Investigation of a direct methanol fuel cell based on a composite Nafion®-silica electrolyte for high temperature operation. Solid State Ion 125:431–437

    Article  Google Scholar 

  49. Mauritz KA, Stefanithis ID (1990) Microstructural evolution of a silicon oxide phase in a perfluorosulfonic acid ionomer by an in situ sol-gel reaction. 2. Dielectric relaxation studies. Macromolecules 23:1380–1388

    Article  Google Scholar 

  50. Stefanithis ID, Mauritz KA (1990) Microstructural evolution of a silicon oxide phase in a perfluorosulfonic acid ionomer by an in situ sol-gel reaction. 3. Thermal analysis studies. Macromolecules 23:2397–2402

    Article  Google Scholar 

  51. Mauritz KA (1998) Organic-inorganic hybrid materials: perfluorinated ionomers as sol-gel polymerization templates for inorganic alkoxides. Mater Sci Eng C 6:121–133

    Article  Google Scholar 

  52. Shao PL, Mauritz KA, Moore RB (1996) [Perfluorosulfonate ionomer]/[SiO2-TiO2] nanocomposites via polymer-in situ sol-gel chemistry: sequential alkoxide procedure. J Polym Sci Polym Phys 34:873–882

    Article  Google Scholar 

  53. Baradie B, Dodelet JP, Guay D (2000) Hybrid Nafion®-inorganic membrane with potential applications for polymer electrolyte fuel cells. J Electroanal Chem 489:101–105

    Article  Google Scholar 

  54. Nalawade AP (2011) Modification and evaluation of fuel cell membranes. Ph. D. Dissertation, University of Southern Mississippi

    Google Scholar 

  55. Shao PL, Mauritz KA, Moore RB (1995) [Perfluorosulfonate ionomer]/[mixed inorganic oxide] nanocomposites via polymer-in situ sol-gel chemistry. Chem Mater 7:192–200

    Article  Google Scholar 

  56. Patil Y, Sambandam S, Ramani V, Mauritz KA (2009) Model studies of the durability of a titania-modified nafion fuel cell membrane. J Electrochem Soc 156:B1092–B1098

    Article  Google Scholar 

  57. Apichatchutapan W, Moore RB, Mauritz KA (1996) Asymmetric Nafion/(zirconium oxide) hybrid membranes via in situ sil-gel chemistry. J Appl Polym Sci 62:417–426

    Article  Google Scholar 

  58. Jalani NH, Dunn K, Datta R (2005) Synthesis and characterization of Nafion®-MO2 (M = Zr, Si, Ti) nanocomposite membranes for higher temperature PEM fuel cells. Electrochim Acta 51:553–560

    Article  Google Scholar 

  59. Amjadi M, Rowshanzamir S, Peighambardoust SJ, Hosseini MG, Eikani MH (2010) Investigation of physical properties and cell performance of Nafion/TiO2 nanocomposite membranes for high temperature PEM fuel cells. Int J Hydrogen Energy 35:9252–9260

    Article  Google Scholar 

  60. Pan J, Zhang H, Chen W, Pan M (2010) Nafion–zirconia nanocomposite membranes formed via in situ sol-gel process. Int J Hydrogen Energy 35:2796–2801

    Article  Google Scholar 

  61. Patil Y, Mauritz KA (2009) Durability enhancement of Nafion® fuel cell membranes via in situ sol-gel-derived titanium dioxide reinforcement. J Appl Polym Sci 113:3269–3278

    Article  Google Scholar 

  62. Patil Y, Kulkarni S, Mauritz KA (2011) In situ grown titania composition for optimal performance and durability of Nafion® fuel cell membranes. J Appl Polym Sci. doi: 10.1002/app.31500

  63. Kim YJ, Choi WC, Woo SI, Hong WH (2004) Proton conductivityProton conductivity and methanol permeation in Nafion™/ORMOSIL prepared with various organic silanes. J Membr Sci 238:213–222

    Article  Google Scholar 

  64. Young SK, Jarrett WL, Mauritz KA (2002) Nafion®/ORMOSIL nanocomposites via polymer-in situ sol–gel reactions. 1. Probe of ORMOSIL phase nanostructures by 29Si solid-state NMR spectroscopy. Polymer 43:2311–2320

    Article  Google Scholar 

  65. Deng Q, Moore RB, Mauritz KA (1995) Novel Nafion/ORMOSIL hybrids via in situ sol-gel reactions. 1. Probe of ORMOSIL phase nanostructures by infrared spectroscopy. Chem Mater 7:2259–2268

    Article  Google Scholar 

  66. Li C, Sun G, Ren S, Liu J, Wang Q, Wu Z, Sun H, Jin W (2006) Casting Nafion-sulfonated organosilica nano-composite membranes used in direct methanol fuel cells. J Membr Sci 272:50–57

    Article  Google Scholar 

  67. Liang ZX, Zhao TS, Prabhuram J (2006) Diphenylsilicate-incorporated Nafion® membranes for reduction of methanol crossover in direct methanol fuel cells. J Membr Sci 283:219–224

    Article  Google Scholar 

  68. D’Epifanio A, Mecheri B, Fabbri E, Rainer A, Traversa E, Licoccia S (2007) Composite ormosil/Nafion membranes as electrolytes for direct methanol fuel cells. J Electrochem Soc 154:B1148–B1151

    Article  Google Scholar 

  69. Nogami M, Miyamura K, Abe Y (1997) Fast protonic conductors of water-containing P2O5–ZrO2–SiO2 glasses. J Electrochem Soc 144:2175–2178

    Article  Google Scholar 

  70. Nogami M, Nagao R, Cong W, Abe Y (1998) Role of water on fast proton conduction in sol-gel glasses. J Sol-Gel Sci Technol 13:933–936

    Article  Google Scholar 

  71. Nogami M, Matsushita H, Goto Y, Kasuga T (2000) A Sol-gel-derived glass as a fuel cell electrolyte. Adv Mater 12:1370–1372

    Article  Google Scholar 

  72. Damay F, Klein LC (2003) Transport properties of Nafion™ composite membranes for proton-exchange membranes fuel cells. Solid State Ion 162–163:261–267

    Article  Google Scholar 

  73. Aparicio M, Damay F, Klein LC (2003) Characterization of SiO2–P2O5–ZrO2 sol-gel/Nafion™ composite membranes. J Sol-Gel Sci Technol 26:1055–1059

    Article  Google Scholar 

  74. Daiko Y, Klein LC, Nogami M (2004) Modifying Nafion with nanostructured inorganic oxides for proton exchange membrane fuel cells. Mat Res Soc Symp Proc 822:S8.4.1–S8.4.6

    Article  Google Scholar 

  75. Aparicio M, Klein LC (2005) Synthesis and characterization of Nafion/60SiO2–30P2O5–10ZrO2 sol-gel composite membranes for PEMFCs. J Electrochem Soc 152:A493–A496

    Article  Google Scholar 

  76. Elabd YA, Hickner MA (2011) Block copolymers for fuel cells. Macromolecules 44:1–11

    Article  Google Scholar 

  77. Nagarale RK, Shin W, Singh PK (2010) Progress in ionic organic-inorganic composite membranes for fuel cell applications. Polym Chem 1:388–408

    Article  Google Scholar 

  78. Laberty RC, Vallé K, Pereira F, Sanchez C (2011) Design and properties of functional hybrid organic–inorganic membranes for fuel cells. Chem Soc Rev 40:961–1005

    Article  Google Scholar 

  79. Xing P, Robertson GP, Guiver MD, Mikhailenko SD, Wang K, Kaliaguine S (2004) Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes. J Membr Sci 229:95–106

    Article  Google Scholar 

  80. Kerres JA (2005) Blended and cross-linked ionomer membranes for application in mem-brane fuel cells. Fuel Cells 5:230–247

    Article  Google Scholar 

  81. Li Q, He R, Jensen JO, Bjerrum NJ (2003) Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100°C. Chem Mater 15:4896–4915

    Article  Google Scholar 

  82. Silva VS, Ruffmann B, Silva H et al (2005) Proton electrolyte membrane properties and direct methanol fuel cell performance: I. Characterization of hybrid sulfonated poly(ether ether ketone)/zirconium oxide. J Power Sources 140:34–40

    Article  Google Scholar 

  83. Mecheri B, D’Epifanio A, Di Vona ML et al (2006) Sulfonated polyether ether ketone-based composite membranes doped with a tungsten-based inorganic proton conductor for fuel cell applications. J Electrochem Soc 153:A463–A467

    Article  Google Scholar 

  84. Pezzin SH, Stock N, Shishatskiy S, Nunes SP (2008) Modification of proton conductive polymer membranes with phosphonated polysilsesquioxanes. J Membr Sci 325:559–569

    Article  Google Scholar 

  85. Xu X, Cabasso I (1993) Preliminary study of phosphonate ion exchange membranes for PEM fuel cells. Polym Mater Sci Eng 68:120–121

    Google Scholar 

  86. Smith JJ, Zharov I (2009) Preparation and proton conductivity of sulfonated polymer-modified sintered and self-assembled silica colloidal crystals. Chem Mater 21:2013–2019

    Article  Google Scholar 

  87. Niepceron F, Lafitte B, Galiano H et al (2009) Composite fuel cell membranes based on an inert polymer matrix and proton-conducting hybrid silica particles. J Membr Sci 338:100–110

    Article  Google Scholar 

  88. Sel O, Laberty RC, Azais T, Sanchez C (2009) Designing meso- and macropore architectures in hybrid organic–inorganic membranes by combining surfactant and breath figure templating (BFT). Phys Chem Chem Phys 11:3733–3741

    Article  Google Scholar 

  89. Zhang J, Xie Z, Zhang J et al (2006) High temperature PEM fuel cells. J Power Sources 160:872–891

    Article  Google Scholar 

  90. Sel O, Soulès A, Améduri B, Boutevin B, Laberty RC, Gebel G, Sanchez C (2010) Original fuel-cell membranes from crosslinked terpolymers via a “sol-gel” strategy. Adv Funct Mater 20:1090–1098

    Article  Google Scholar 

  91. Kato M, Sakamoto W, Yogo T (2007) Synthesis of proton-conductive sol-gel membranes from trimethoxysilylmethylstyrene and phenylvinylphosphonic acid. J Membr Sci 303:43–53

    Article  Google Scholar 

  92. Li S, Zhou Z, Abernathy H et al (2006) Synthesis and properties of phosphonic acid-grafted hybrid inorganic–organic polymer membranes. J Mater Chem 16:858–864

    Article  Google Scholar 

  93. Lee S-Y, Ogawa A, Kanno M et al (2010) Nonhumidified intermediate temperature fuel cells using protic ionic liquids. J Am Chem Soc 132:9764–9773

    Article  Google Scholar 

  94. Yan F, Yu S, Zhang X et al (2009) Enhanced proton conduction in polymer electrolyte membranes as synthesized by polymerization of protic ionic liquid-based microemulsions. Chem Mater 21:1480–1484

    Article  Google Scholar 

  95. Lin B, Cheng S, Qiu L et al (2010) Protic ionic liquid-based hybrid proton-conducting membranes for anhydrous proton exchange membrane application. Chem Mater 22:1807–1813

    Article  Google Scholar 

  96. Lakshminarayana G, Nogami M (2010) Inorganic–organic hybrid membranes with anhydr-ous proton conduction prepared from tetramethoxysilane/methyltrimethoxysilane/trimethyl phosphate and 1-ethyl-3-methylimidazolium-bis(trifluoromethanesulfonyl) imide for H2/O2 fuel cells. Electrochim Acta 55:1160–1168

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the DOE Office of Energy Efficiency and Renewable Energy, contract # DE-FG36-08GO88106 for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth A. Mauritz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 © Springer Science+Business Media New York

About this chapter

Cite this chapter

Mauritz, K.A., Nalawade, A., Hassan, M.K. (2012). Proton Exchange Membranes for H2 Fuel Cell Applications. In: Aparicio, M., Jitianu, A., Klein, L. (eds) Sol-Gel Processing for Conventional and Alternative Energy. Advances in Sol-Gel Derived Materials and Technologies. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1957-0_5

Download citation

Publish with us

Policies and ethics