Skip to main content

Sol-Gel Packaging for Electrochemical Devices

  • Chapter
  • First Online:
Sol-Gel Processing for Conventional and Alternative Energy

Part of the book series: Advances in Sol-Gel Derived Materials and Technologies ((Adv.Sol-Gel Deriv. Materials Technol.))

Abstract

Packaging is an essential part of manufacturing electrochemical devices, such as micro-batteries and super-capacitors. Hermetic packaging is required to prevent humidity and gases from degrading components and interconnects. Typically, packaging is the last step in assembling such devices. Consequently, packaging materials have to be applied at low processing temperatures. Sol-gel processed hybrid organic–inorganic materials are convenient low temperature materials for packaging. This chapter, which surveys the use of sol-gel hybrids in packaging of electronic devices, is based, in part (Jitanu and Klein In Hybrid nanocomposites for nanotechnology: electronic optical magnetic and bio/medical applications. Springer, Berlin, pp. 429–453, 2009), which appeared in 2009. The survey has been updated and focused on electrochemical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lews J (2006) Material challenge for flexible organic devices. Mater Today 9:38–45

    Article  Google Scholar 

  2. Burrows PE, Graff GL, Gross ME, Martin PM, Shi MK, Hall M, Mast E, Bonham C, Bennett W, Sullivan MB (2001) Ultra barrier flexible substrates for flat panel display. Display 22:65–69

    Article  Google Scholar 

  3. Ely K (2000) Issues in hermetic sealing of medical products. MDDI 186

    Google Scholar 

  4. Chantham H (1996) Oxygen diffusion barrier properties of transparent oxide coatings on polymeric substrates. Surf Coat Tech 78:1–9

    Article  Google Scholar 

  5. Graff GL, Williford RE, Burrows PE (2004) Mechanisms of vapor permeation through multilayer barrier films: Log time versus equilibrium permeation. J Appl Phys 96:1840–1849

    Article  Google Scholar 

  6. da Silva Sobrinho AS, Czeremuszkin G, Latreche M, Wertheimer MR (2000) Defect-permeation correlation for ultrathin transparent barrier coatings on polymers. J Vac Sci Technol A 18:149–157

    Article  Google Scholar 

  7. Vogt BD, Lee H-J, Prabhu VM, DeLongchamp DM, Lin EK, Wu W-I (2005) X-ray and neutron reflectivity measurements of moisture transport through model multilayered barrier films for flexible displays. J Appl Phys 97:114509-1–114509-7

    Article  Google Scholar 

  8. da Silva Sobrinho AS, Latreche M, Czeremuszkin G, Klemberg-Sapieha JE, Wertheimer MR (1998) Transparent barrier coatings on polyethylene terephthalate by single and dual-frequency plasma-enhanced chemical vapor deposition. J Vac Sci Technol A 16:3190

    Article  Google Scholar 

  9. Tang CW, van Slyke SA (1997) Organic electroluminescent diodes. Appl Phys Lett 51:913–915

    Article  Google Scholar 

  10. Burrows PE, Bulovic V, Forrest SR, Sapochak LS, McCarty DM, Thomson ME (1994) Reliability and degradation of organic light emitting devices. Appl Phys Lett 65:2922–2924

    Article  Google Scholar 

  11. Burrows PE, Graff GL, Gross ME, Martin PM, Hall M, Mast E, Bonham C, Bennett W, Michalski L, Weaver M, Brown JJ, Fogarty D, Sapochak LS (2001) Gas permeation and lifetime test on polymer-based barrier coatings. Proc SPIE 4105:75–83

    Article  Google Scholar 

  12. Gu G, Burrows PE, Venkatesh S, Forrest SR, Thompson ME (1997) Vacuum-deposited non-polymeric flexible organic light-emitting devices. Opt Lett 22:172–174

    Article  Google Scholar 

  13. Baldo MA, Lamannsky S, Burrows PE, Thompson ME, Forrest SR (1999) Very high-efficiency green organic light-emitting devices based on electro-phosphorescence. Appl Phys Lett 75:4–6

    Article  Google Scholar 

  14. Waver MS, Michalski LA, Rajan K, Rothman MA, Silvernail JA, Brown JJ, Burrows PE, Graff GL, Gross ME, Martin PM, Hall M, Mast E, Bonham C, Bennett W, Zumhoff M (2002) Organic light-emitting devices with extended operating lifetimes on plastic substrates. Appl Phys Lett 81:2929

    Article  Google Scholar 

  15. Groner MD, George SM, McLean SM, Carcia PF (2006) Gas diffusion barriers on polymers using Al2O3 atomic layer deposition. Appl Phys Lett 88:051907-1–051907-3

    Article  Google Scholar 

  16. Carcia PF, McLean RS, Reilly MH, Gorner MD, George SM (2006) Ca test of Al2O3 gas diffusion barriers grown by atomic layer deposition on polymers. Appl Phys Lett 89:031915-1–031915-3

    Article  Google Scholar 

  17. Dunkel R, Bujas R, Klein A, Horndt V (2005) Method of measuring ultralow water vapor permeation for OLED displays. Proc IEEE 93:1478–1482

    Article  Google Scholar 

  18. a. Mocon Inc. www.mocon.com, Accessed Mar 2011. b. http://www.mocon.com/permeation.php Accessed Mar 2011

  19. Ranade A, D’Souza NA, Wallace RM, Gnade BE (2005) High sensitivity gas permeability measurement system for thin plastic films. Rev Sci Instrum 76:013902-1–013902-5

    Article  Google Scholar 

  20. Nilsson PO, Forssell G (1977) Optical properties of calcium. Phys Rev B 16:3352–3358

    Article  Google Scholar 

  21. Nisato G, Bouten PCP, Slikkerveer PJ, Bennett WD, Graff GL, Rutherford N, Wiese L (2001) Evaluating high performance diffusion barriers: the calcium test. Proc Int Display Workshop/Asia Display 1435–1438

    Google Scholar 

  22. Nisato G, Kuilder M, Bouten P, Moro L, Philips O, Rutherford N (2003) Thin film encapsulation for Oleds: evaluation of multi-layer barriers using a Ca test. Proc Soc Info Display Symp Digest Tech Papers 34:550–553

    Article  Google Scholar 

  23. Paetzold R, Winnacker A, Henseler D, Cesari V, Heuser K (2003) Permeation rate measurements by electrical analysis of calcium corrosion. Rev Sci Instrum 74:5147–5150

    Article  Google Scholar 

  24. Jitanu A, Klein LC (2009) Sol-Gel Hybrids for electronic applications: hermetic coatings for microelectronics and energy storage. In: Merhari L (ed) Hybrid nanocomposites for nanotechnology: electronic optical magnetic and bio/medical applications. Springer, Berlin, pp 429–453

    Chapter  Google Scholar 

  25. Sanchez C, Ribot F (1994) Chemical design of hybrid organic-inorganic materials synthesized via sol-gel. New J Chem 10:1007–1040

    Google Scholar 

  26. Jitianu A, Britchi A, Deleanu C, Badescu V, Zaharescu M (2003) Comparative study of the sol-gel processes starting with different substituted Si-alkoxide. J Non-Cryst Solids 319:263–279

    Article  Google Scholar 

  27. Unger B, Jancke H, Hahnert M, Stade H (1994) The early stages of the sol-gel processing of TEOS. J Sol-Gel Sci Tech 2:51

    Article  Google Scholar 

  28. Wojcik AB, Klein LC (1995) Transparent inorganic/organic copolymers by the sol-gel process: copolymers of tetraethyl orthosilicate (TEOS), vinyl triethoxysilane (VTES) and (meth)acrylate monomers. J Sol-Gel Sci Tech 4:57–66

    Article  Google Scholar 

  29. Wojcik AB, Klein LC (1995) Transparent inorganic/organic copolymers by the sol-gel process: Thermal behavior of copolymers of tetraethyl orthosilicate (TEOS), vinyl triethoxysilane (VTES) and (meth)acrylate monomers. J Sol-Gel Sci Tech 5:77–82

    Article  Google Scholar 

  30. Wojcik AB, Klein LC (1997) Organic/inorganic hybrids by the sol-gel process: classification of synthesis methods. Appl Organomet Chem 11:129–135

    Article  Google Scholar 

  31. Avnir D, Klein LC, Levy D, Schubert U, Wojcik AB (1998) Organo-silica Sol-Gel materials. In: Rappoport Z, Apeloig Y (eds) The chemistry of organosilicon compounds, vol 2. Wiley, London, pp 2317–2362 (Chapter 40)

    Google Scholar 

  32. Jackson A, Jitianu A, Klein LC (2006) Development of hermetic barrier using vinyl triethoxysilane (VTEOS) and Sol-Gel processing. Mater Matters (Sigma-Aldrich) 1:11–12

    Google Scholar 

  33. Amberg-Schwab S, Hoffmann M, Bader H (1996) Barrierschichten für Verpackungsmaterialien; Barriereschichten aus anorganish-organischen Hybridopolymeren. Kunststoffe 86:660–664

    Google Scholar 

  34. Amberg-Schwab S, Hoffmann M, Bader H, Gessler M (1998) Inorganic-Organic polymers with barrier for water vapor, oxygen and flavors. J Sol-Gel Sci Tech 13:141–146

    Article  Google Scholar 

  35. Amberg-Schwab S, Katschorek H, Weber U, Hoffmann M, Burger A (2000) Barrier properties of inorganic-organic polymers: influence of starting compounds, curing, conditions and storage-scaling-up to industrial application. J Sol-Gel Sci Tech 19:125–129

    Article  Google Scholar 

  36. Hoffmann M, Amberg-Schwab S (1998) Barrier properties of inorganic-organic polymers. Mat Res Soc Symp Proc 519:309–314

    Article  Google Scholar 

  37. Amberg-Schwab S, Katschorek H, Weber U, Burger A (2003) Inorganic-organic polymers as migration barriers against liquid and volatile compounds. J Sol-Gel Sci Tech 26:699–703

    Article  Google Scholar 

  38. Amberg-Schwab S, Weber U, Burger A, Nique S, Xalter R (2006) Development of passive and active barrier coatings on basis of inorganic-organic polymers. Monatshefte für Chemie (Chemical Monthly) 137:657–666

    Article  Google Scholar 

  39. Sanchez C, Julian B, Belleville P, Popall M (2005) Applications of hybrid organic-inorganic nanocomposites. J Mat Chem 15:3559–3592

    Article  Google Scholar 

  40. Dahmouche K, Atik M, Mello NC, Bonagamba TJ, Panepucci H, Aegerter MA, Judeinstein P (1997) Investigation of new ion-conducting ORMOLYTES: structure and properties. J Sol-Gel Sci Technol 8:711

    Google Scholar 

  41. Jerome R, Mazurek M (1997) Synthesis and characterisation of the molecular structure. In: Tant MR, Mauritz KA, Wilkes GL (eds) Ionomers: synthesis, structure, properties and applications. Blackie Academic and Professional, London, p 3

    Google Scholar 

  42. Watanabe H (2002) Patent No. JP 2002011116

    Google Scholar 

  43. Jitianu A, Amatucci G, Klein LC (2008) Organic-inorganic Sol-Gel thick films for humidity barriers. J Mater Res 23:2084–2090

    Article  Google Scholar 

  44. Rondinella VV, Matthewson MJ (1993) Effect of loading mode and coating on dynamic fatigue of optical fiber in two-point bending. J Am Ceram Soc 76:139–144

    Article  Google Scholar 

  45. Wei TS, Skutnik BJ (1988) Effect of coating on fatigue behavior of optical fiber. J Non-Cryst Solids 102:100–105

    Article  Google Scholar 

  46. Nishiyama N, Horie K, Sakura T (1988) Adsorption behavior of a silane coupling agent onto a colloidal silica surface studies by 29Si NMR spectroscopy. J Colloid Interface Sci 129:113–119

    Article  Google Scholar 

  47. Jitianu A, Doyle J, Amatucci G, Klein LC (2008) Methyl-modified melting gels for hermetic barrier coatings, In Proceedings MS&T enabling surface coating systems: multifunctional coatings (CD-ROM), Pittsburgh, PA, pp 2171–2182

    Google Scholar 

  48. Jitianu A, Amatucci G, Klein LC (2008) Phenyl-substituted siloxane hybrid gels that soften below 140°C. J Am Ceram Soc 92:36–40

    Article  Google Scholar 

  49. Jitianu A, Doyle J, Amatucci G, Klein LC (2010) Methyl modified siloxane melting gels for hydrophobic films. J Sol-Gel Sci Tech 53:272–279

    Article  Google Scholar 

  50. Klein LC, Jitianu A (2010) Organic-inorganic hybrid melting gels. J Sol-Gel Sci Tech 55:86–93

    Article  Google Scholar 

  51. Matsuda A, Sasaki T, Hasegawa K, Tatsumisago M, Minami T (2001) Thermal softening behavior and application to transparent thick films of poly(benzylsilsesquioxane) particles prepared by sol-gel process. J Am Cer Soc 84:775–780

    Article  Google Scholar 

  52. Masai H, Tokuda Y, Yoko T (2005) Gel-melting method for preparation of organically modified siloxane low-melting glasses. J Mater Res 20:1234–1241

    Article  Google Scholar 

  53. Kakiuchida H, Takahashi M, Tokuda Y, Masai H, Kuniyoshi M, Yoko T (2006) Viscoelastic and structural properties of the phenyl-modified polysiloxane system with a three-dimensional structure. J Phys Chem B 110:7321–7327

    Article  Google Scholar 

  54. Kakiuchida H, Takahashi M, Tokuda Y, Masai H, Kuniyoshi M, Yoko T (2007) Effects of organic groups on structure and viscoelastic properties of organic-inorganic polysiloxane. J Phys Chem B 111:982–988

    Article  Google Scholar 

  55. Jitianu A, Lammers K, Arbuckle GA, Amatucci GG, Klein LC (2011) Thermal analysis of organically modified siloxane melting gels. Accepted in J Therm Anal

    Google Scholar 

  56. Kumar RS, Auch M, Ou E, Ewald G, Jin CS (2002) Low moisture permeation measurement through polymer substrates for organic light emitting devices. Thin Solid Films 417:120–126

    Article  Google Scholar 

  57. Wojcik AB, Klein LC, Rondinella VV, Matthewson MJ, Foy PR (1993) Organically modified silicate coatings for optical fibers. SPIE Proc 2074:135–141

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Jitianu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 © Springer Science+Business Media New York

About this chapter

Cite this chapter

Jitianu, A., Gambino, L., Klein, L.C. (2012). Sol-Gel Packaging for Electrochemical Devices. In: Aparicio, M., Jitianu, A., Klein, L. (eds) Sol-Gel Processing for Conventional and Alternative Energy. Advances in Sol-Gel Derived Materials and Technologies. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1957-0_17

Download citation

Publish with us

Policies and ethics