Skip to main content

Sol-Gel Coatings For Electrochromic Devices

  • Chapter
  • First Online:
Sol-Gel Processing for Conventional and Alternative Energy

Part of the book series: Advances in Sol-Gel Derived Materials and Technologies ((Adv.Sol-Gel Deriv. Materials Technol.))

Abstract

This chapter describes first the principles of electrochromic (EC) devices and then reviews the most important solgel developments related to the preparation and characterisation of the different layers used for the realisation of such devices: transparent conducting coatings, electrochromic coatings, counter electrodes and electrolytes. Finally the review shows how these coatings have been used for the realisation of prototypes and devices such as windows and displays describing their electro-optical properties, their long-term behaviour as well as their advantages and drawbacks. This review is a shorter but updated version based on earlier reviews published by the authors in 1996, 2005 and 2006.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Granqvist CG (1995) Handbook of inorganic electrochromic materials. Elsevier, Amsterdam

    Google Scholar 

  2. Monk PMS, Mortimer RJ, Rosseinsky DR (1995) Electrochromism-fundamentals and applications. VCH Verlagsgesellschaft mbh, Weinheim

    Google Scholar 

  3. Lampert CM (1999) The world of large-area glazing and displays. In: Proceedings of SPIE, Switchable Materials and Flat Panel Displays, Denver, Colorado, July 21–22. SPIE, vol 3788. Bellingham, Washington, USA, pp 2–11.

    Google Scholar 

  4. Lampert CM (2003) Large-area smart glass and integrated photovoltaics. Sol Energy Mater Sol Cells 76:489–499

    Article  Google Scholar 

  5. Granqvist CM (2007) Transparent conductors as solar energy materials: a panoramic review. Sol Energy Mater Sol Cells 91:1529–1598

    Article  Google Scholar 

  6. Granqvist CG (2001) Electrochromic windows: toward an energy efficient architecture. Interface 3:18–19

    Google Scholar 

  7. Azens A, Granqvist CG (2003) Electrochromic smart windows: energy efficiency and device aspects. J Solid State Electrochem 7:64–68

    Google Scholar 

  8. Aegerter MA (1996) Sol-Gel chromogenic materials and devices. In: Reisfeld R, Jorgensen CK (eds) Structure and Bonding, vol 85. Springer, Berlin, pp 149–194

    Google Scholar 

  9. Heusing S, Aegerter MA (2005) Sol-Gel coatings for electrochromic devices. In: Sakka S (ed), Handbook of Sol-Gel Science and Technology, vol 3. Kluwer Academic Publishers, The Netherlands, pp 719–760

    Google Scholar 

  10. Heusing S, Aegerter MA (2006) Stand der Anwendung der Elektrochromie in der Architektur, Proc. des 6. Symposiums Zukunft Glas—Von der Tradition zum High-Tech-Produkt. Otti, Zwiesel, p 72

    Google Scholar 

  11. Rauh RD (1999) Electrochromic windows: an overview. Electrochim Acta 44:3165–3176

    Article  Google Scholar 

  12. O´Brian NA, Gordon J, Mathew H, Hichwa BP (1999) Electrochromic coatings-applications and manufacturing issues. Thin Solid Films 345:312–318

    Article  Google Scholar 

  13. Yoshiaki I, Osamu N, Hideyuki K (1998) All-solid electrochromic anti-glare mirror. Murakami Kaimeido Co, US Patent 6, 06, 1168

    Google Scholar 

  14. Dornan CA, Habibi H, Lynam NR, McCabe IA (1994) Electrochromic mirrors and devices. Donnelly corporation, WO Patent 95 30 495

    Google Scholar 

  15. Bauer FT, Bechtel JH (1984) Automatic rearview mirror for automotive vehicles. Gentex Corporation, US Patent 4, 443, 057

    Google Scholar 

  16. Bechtel JH, Byker HJ (1990) Automatic rearview mirror system for automotive vehicles. Gentex Corporation, US Patent 4, 917, 477

    Google Scholar 

  17. Byker HJ (1992) Variable reflectance motor vehicle mirror. Gentex Corporation, US Patent 5, 128, 799

    Google Scholar 

  18. Byker HJ (1990) Single-compartment, self-erasing, solution-phase electrochromic devices, solutions for use therein, and uses thereof. Gentex Corporation, US Patent 4, 902, 108

    Google Scholar 

  19. Puetz J, Aegerter MA (2004) Transparent conducting oxide coatings in Sol-Gel technologies for glass producers and users. In: Aegerter MA, Mennig M (ed) Sol-Gel technologies for glass producers and users, Kluwer, The Netherlands

    Google Scholar 

  20. Bard AJ, Faulkner LR (2000) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  21. Agrawal A, Cronin JP, Zhang R (1993) Review of solid state electrochromic coatings using Sol-Gel techniques. Sol Energy Mater Sol Cells 31:9–21

    Article  Google Scholar 

  22. Vroon ZAEP, Spee CIMA (1997) Sol-Gel coatings on large area glass sheets for electrochromic devices. J Non-Cryst Solids 218:189–195

    Article  Google Scholar 

  23. Bessière A, Badot JC, Certiat MC, Livage J, Lucas V, Baffier N (2001) Sol-Gel deposition of electrochromic WO3 thin film on flexible ITO/PET substrate. Electrochim Acta 46:2251–2256

    Article  Google Scholar 

  24. Kim C-Y, Lee M, Huh S-H, Kim E-K (2010) J Sol-Gel Sci Technol 53:176–183

    Article  Google Scholar 

  25. Cronin JP, Tarico DJ, Agrawal A, Zhang RL (1993) Method for depositing electrochromic layers, US Patent 5, 252, 354

    Google Scholar 

  26. Cronin JP, Tarico DJ, Tonazzi JCC, Agrawal A, Kennedy SR (1993) Microstrucure and propewrties of Sol-Gel deposited WO3 coatings for large area electrochromic windows. Sol Energy Mater Sol Cells 29:371–386

    Article  Google Scholar 

  27. Cronin JP, Tarico DJ, Agrawal A, Zhang RL (1994) Method for depositing high performing electrochromic layers, United States Patent 5, 277, 986

    Google Scholar 

  28. Schmidt H, Krug H, Merl N, Moses A, Judeinstein P, Berni A (1994) Electrochromic thin-film systems and components thereof. Patent WO 95/28663

    Google Scholar 

  29. Munro B, Krämer S, Zapp P, Krug H (1998) Characterization of electrochromic WO3-layers prepared by Sol-Gel nanotechnology. J Sol-Gel Sci Technol 13:673–678

    Article  Google Scholar 

  30. Munro B, Conrad P, Krämer S, Schmidt H, Zapp P (1998) Development of electrochromic cells by the Sol-Gel process. Sol Energy Mater Sol Cells 54:131–137

    Article  Google Scholar 

  31. Heusing S, Munro B, Koch T, Zapp P, Mennig M, Schmidt H (1999) Weiterentwicklung elektrochromer Dünnschichtsysteme auf Glas über naßchemische Verfahren. In: Proceedings of the 73th Glastechnische Tagung, Halle (Saale), Germany, pp 40–43

    Google Scholar 

  32. Bell JM, Matthews JP, Skryabin IL, Wang J, Monsma BG (1998) Sol-Gel deposited electrochromic devices. Renew Energy 15:312–317

    Article  Google Scholar 

  33. Bell JM, Skryabin IL, Koplick AJ (2001) Large area electrochromic films—preparation and performance. Sol Energy Mater Sol Cells 68:239–247

    Article  Google Scholar 

  34. Lefheriotis G, Papaefthimiou S, Yianoulis P (2004) Sol Energy Mater Sol Cells 83:115–124

    Article  Google Scholar 

  35. Schmitt M, Heusing S, Aegerter MA, Pawlicka C, Avellaneda CO (1998) Electrochromic properties of Nb2O5 Sol-Gel coatings. Sol Energy Mater Sol Cells 54:9–17

    Article  Google Scholar 

  36. Schmitt M, Aegerter MA (1999) Electrochromic properties of Nb2O5 and Nb2O5 :X (X=Sn, Zr, Li, Ti, Mo). In: Proceedings of the SPIE conference on switchable materials and flat panel displays, Denver, Colorado, July 1999. SPIE, vol 3788. pp 93–102

    Google Scholar 

  37. Schmitt M, Aegerter MA (2001) Electrochromic properties of pure and doped Nb2O5 coatings and devices. Electrochim Acta 46:2105–2111

    Article  Google Scholar 

  38. Sun DL, Heusing S, Puetz J, Aegerter MA (2003) Influence of water on the electrochromic properties of Nb2O5:Mo, WO3 and (CeO2)x(TiO2)1−x Sol-Gel coatings and electrochromic devices. Solid State Ionics 165:181–189

    Article  Google Scholar 

  39. Schmitt M, Aegerter MA (1999) Properties of electrochromic devices made with Nb2O5 and Nb2O5:X (X=Li, Ti or Mo) as coloring electrode. In: Procedings of the SPIE conference on switchable materials and flat panel displays. Denver, Colorado, July 1999. SPIE, vol 3788, pp 75–83

    Google Scholar 

  40. Dhanasankar M, Purishothaman KK, Muralidharan G (2010) Effect of tungsten on the electrochromic behavior of Sol-Gel dip coated molybdenum oxide thin films. Mater Res Bulletin 45:542–545

    Article  Google Scholar 

  41. Li Y, Kudo T (1995) Electrochromic properties of spin-coated thin films from peroxo-polymolybdovanadate solutions. J Electrochem Soc 142:1194–1199

    Article  Google Scholar 

  42. Dhanasankar M, Purishothaman KK, Muralidharan G (2010) Enhanced electrochromism in cerium doped molybdenum oxide thin films. Mater Res Bull 45:1969–1972

    Article  Google Scholar 

  43. Azens A, Kullmann L, Vaivars G, Nordborg H, Granqvist CG (1998) Sputter-deposited nickel oxide for electrochromic applications. Solid State Ionics 113–115:449–456

    Article  Google Scholar 

  44. Svensson JSEM, Granqvist CG (1986) Electrochromic hydrated nickel-oxide coatings for energy-efficient windows—optical-properties and coloration mechanism. Appl Phys Lett 49:1566–1568

    Article  Google Scholar 

  45. Moser FH, Lynam NR (1990) US Patent 4, 959, 247

    Google Scholar 

  46. Miki T, Yoshimura K, Tai Y, Tazawa M, Jin P, Tanemura S (1995) Electrochromic properties of nickel oxide thin films prepared by the Sol-Gel method. Proc SPIE 2531:135–142

    Google Scholar 

  47. Šurca A, Orel B (1997) Sol-Gel derived hydrated nickel oxide electrochromic films: optical, spectroelectrochemical and structural properties. J Sol-Gel Sci Technol 8:743–749

    Google Scholar 

  48. Cerc Koroŝec R, Bukovec P, Pihlar B, Padežnik Gomilšek J (2003) The role of thermal analysis in optimization of the electrochromic effect of nickel oxide thin films, prepared by the Sol-Gel method: part I. Thermochimica Acta 402:57–67

    Article  Google Scholar 

  49. Cerc Koroŝec R, Bukovec P (2004) The role of thermal analysis in optimization of the electrochromic effect of nickel oxide thin films, prepared by the Sol-Gel method: part II. Thermochimica Acta 410:65–71

    Article  Google Scholar 

  50. Cerc Koroŝec R, Bukovec P (2006) Sol-Gel prepared NiO films for electrochromic application. Acta Chim Slov 53:137–147

    Google Scholar 

  51. Sharma PK, Fantini MCA, Gorenstein A (1998) Synthesis characterization and electrochromic properties of NiOxHy thin film prepared by a Sol-Gel method. Solid State Ionics 113–115:457–463

    Article  Google Scholar 

  52. Sharma PK, Mracia MCA, Fischer H, Craievich AF, Gorenstein A (1999) Factors influencing the electrochromic properties of nickel oxide thin films derived from Sol-Gel methode by dip-coating. Mat Res Soc Symp Proc 547:351–356

    Article  Google Scholar 

  53. Moser FH, Lyman NR (1989) US Patent 4855166 and US Patent 4855161

    Google Scholar 

  54. Martini M, Brito GES, Fantini MCA, Craievich AF, Gorenstein A (2001) Electrochromic propertie of NiO-based thin films prepared by Sol-Gel and dip-coating. Electrochim Acta 48:2275–2279

    Article  Google Scholar 

  55. Al-Kalhout A, Heusing S, Aegerter MA (2006) Electrochromism of NiO–TiO2 Sol-Gel layers. J Sol-Gel Sci Technol 39:195–206

    Article  Google Scholar 

  56. Al-Kalhout A, Aegerter MA (2007) Coloration mechanisms of Sol-Gel NiO–TiO2 layers studied by EQCM. Sol Energy Mater Sol Cells 91:213–223

    Article  Google Scholar 

  57. Al-Kalhout A, Pawlicka A, Aegerter MA (2006) Brown coloring electrochromic devices based on NiO-TiO2 layers. Sol Energy Mater Sol Cells 90:3583–3601

    Article  Google Scholar 

  58. Švegl F, Orel B, Kaučič V (2000) Electrochromic properties of lithiated Co-oxide (LixCoO2) and Ni-oxide (LixNiO2) thin films prepared by the Sol-Gel route. Sol Energy 68:523–540

    Article  Google Scholar 

  59. Baudry P, Rodrigues ACM, Aegerter MA, Bulhoes LO (1990) Dip-coated TiO2–CeO2 films as transparent counter electrode for transmissive electrochromic devices. J Non-Cryst Solids 121:319–322

    Article  Google Scholar 

  60. Štangar UL, Orel B, Grabec I, Ogorevc B, Kalcher K (1993) Optical and electrochemical properties of CeO2 and CeO2–TiO2 coatings. Sol Energy Mater Sol Cells 31:171–185

    Article  Google Scholar 

  61. Orel Z, Orel B (1994) Electrochemical and optical properties of Sol-Gel derived CeO2 and mixed CeO2/SnO2 coatings. In: Proceedings of SPIE optical materials technology for energy efficiency and solar energy conversion XIII, Bellingham, Washington, USA. SPIE 2255:285–296

    Google Scholar 

  62. Pawlicka A, Avellaneda CO (2000) Thin film Sol-Gel of CeO2–ZrO2: the candidate for counter electrode in electrochromic devices. Mol Cryst Liq Cryst 354:1051–1061

    Google Scholar 

  63. Berton MAC, Avellaneda CO, Bulhoes LOS (2003) Thin film of CeO2–SiO2: a new ion-storage layer for smart windows. Sol Energy Mater Sol Cells 80:443–449

    Article  Google Scholar 

  64. Opara Krašovec U, Orel B, Reisfeld R (1998) Electrochromism of CeVO4 and Ce/V-oxide ion-storage films prepared by the Sol-Gel route. Electrochem Solid-State Lett 1:104–106

    Article  Google Scholar 

  65. Avellaneda CO, Pawlicka A (1998) Preparation of transparent CeO2–TiO2 coatings for electrochromic devices. Thin Solid Films 335:245–248

    Article  Google Scholar 

  66. Kim C-Y, Cho S-G, Lim T-Y, Choi D-K (2009) Anomalous lithium diffusion into CeO2–TiO2 thin film by film thickness. J Solid Sate Electrochem 13:1165–1170

    Article  Google Scholar 

  67. Sun D-L, Puetz J, Heusing S, Aegerter MA (2002) Influence of water on the electrochemical properties of CeO2–TiO2 Sol-Gel coatings and electrochromic devices. Proc SPIE Sol-Gel Opt VI 4804:17–25

    Google Scholar 

  68. Sun D, Heusing S, Aegerter MA (2007) Li+ion exchange in CeO2–TiO2 Sol-Gel layers studied by electrochemical quartz crystal microbalance. Sol Energy Mater Sol Cells 91:1037–1050

    Article  Google Scholar 

  69. Verma A, Samanta SB, Bakhshi AK, Agnihotry SA (2004) Optimization of CeO2–TiO2 compositions for fast switching kinetics and improved Li ion storage capacity. Solid State Ionics 171:81–90

    Article  Google Scholar 

  70. Verma A, Goyal A, Sharma RK (2008) Microstructural, photocatalysis and electrochelical investigations on CeTi2O6 thin films. Thin Solid Films 516:4925–4933

    Article  Google Scholar 

  71. Verma A, Bakhshi AK, Agnihotry SA (2006) Effect of different precursor sols on the properties of CeO2–TiO2 films for electrochromic window application. Electrochim Acta 51:4639–4648

    Article  Google Scholar 

  72. Berton MAC, Avellaneda CO (2001) Electrochemical properties of CeO2–SnO2 and CeO2–SnO2:X (X = Li, C, Si) films. Mater Res 4:241–244

    Google Scholar 

  73. Opara Krašovec U, Šurca Vuk A, Orel B (2002) Comparative studies of “all Sol-Gel” electrochromic windows employing various counter electrodes. Sol Energy Mater Sol Cells 73:21–37

    Article  Google Scholar 

  74. Šurca A, Orel B, Opara Krašovec U, Lavrenčič Štangar U (2000) Electrochromic and structural studies of nanocrystalline Fe/V (1:2)-oxide and crystalline Fe2V4O13 films. J Electrochem Soc 147:2358

    Article  Google Scholar 

  75. Opara Krašovec U, Orel B, Hočevar S, Muševič I (1997) Electrochemical and spectroelectrochemical properties of SnO2 and SnO2/Mo transparent electrodes with high ion-storage capacity. J Electrochem Soc 144:3398–3409

    Article  Google Scholar 

  76. Yang Y, Zhu Q, Jin A, Chen W (2008) High capacity and contrast of electrochromic tungsten-doped vanadium oxide films. Solid State Ionics 179:1250–1255

    Article  Google Scholar 

  77. Jin A, Chen W, Zhu Q (2009) High Li+-ion storage capacity and multi-electrochromism behaviour of electrodeposited molybdenum doped vanadium oxide films. Advan Mater Res 79–82:799–802

    Article  Google Scholar 

  78. Kim S, Taya M, Xu C (2009) Contrast, switching speed and durability of V2O5–TiO2 film-based electrochromic windows. J Electrochem Soc 156:E40–E45

    Article  Google Scholar 

  79. Bell JM, Skryabin IL (1999) Failure modes of Sol-Gel deposited electrochromic devices. Sol Energy Mater Sol Cells 56:437–448

    Article  Google Scholar 

  80. Coleman JP, Lynch AT, Madhukar P, Wagenknecht JH (1999) Antimony-doped tin oxide powders: electrochromic materials for printed displays. Sol Energy Mater Sol Cells 156:375–394

    Google Scholar 

  81. Doeuff S, Sanchez C (1989) Electrochromic properties of anatase TiO2 films prepared by the Sol-Gel process. CR Acad Sci II 309:531–534

    Google Scholar 

  82. Özer N (1992) Reproducibility of the coloration processes in TiO2 films. Thin Solid Films 214:17–24

    Article  Google Scholar 

  83. Verma A, Basu A, Bakhshi AK, Agnihotry SA (2005) Structural, optical and electrochemical properties of Sol-Gel derived TiO2 films: annealing effects. Solid State Ionics 176:2285–2295

    Article  Google Scholar 

  84. Verma A, Kar M, Agnihotry SA (2007) Aging effect of diethanolamine stabilized sol on different properties of TiO2 films. Electrochromic appl Sol Energy Mater Solar Cells 91:1305–1312

    Article  Google Scholar 

  85. Zelazowska E, Rysiakiewics-Pasek E (2009) Thin TiO2 films for an electrochromic system. Opt Mater 31:1802–1804

    Article  Google Scholar 

  86. O'Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  87. Hagfeld A, Vlachopoulos N, Gilbert S, Grätzel M (1994) Electrochromic switching with nanocrystalline TiO2 semiconductor films. In: Proceedings of SPIE, optical materials technology for energy efficiency and solar energy conversion XIII, SPIE, vol 2255. Bellingham, Washington, USA pp 297–303

    Google Scholar 

  88. Marguerettaz X, O´Neill R, Fitzmaurice DJ (1994) Heterodyads—electron-transfer at a semiconductor electrode liquid electrolyte interface modified by an adsorbed spacer acceptor complex. J Am Chem Soc 116:2629–2630

    Article  Google Scholar 

  89. Hagfeld A, Vlachopoulos N, Grätzel M (1994) Fast electrochromic switching with nanocrystalline oxide semiconductor films. J Electrochem Soc 141:L82–L84

    Article  Google Scholar 

  90. Cinnsealach R, Boschloo G, Rao SN, Fitzmaurice D (1998) Electrochromic windows based on viologen-modified nanostructured TiO2 films. Sol Energy Mater Sol Cells 55:215–233

    Article  Google Scholar 

  91. Fitzmaurice D, Rao SN, Cinnsealach R, Enright B (1998) Eur Pat Applications 98/9032735

    Google Scholar 

  92. Cummins D, Boschloo G, Ryan M, Corr D, Rao SN, Fitzmaurice D (2000) Ultrafast electrochromic windows based on redox-chromophore modified nanstructured semiconducting and conducting films. J Phys Chem B 104:11449–11459

    Article  Google Scholar 

  93. Bach U, Corr D, Lupo D, Pichot F, Ryan M (2002) Nanomaterials-based electrochromics for paper-quality displays. Adv Mater 14:845–848

    Article  Google Scholar 

  94. Corr D, Bach U, Fay D, Kinsella M, McAtamney C, O´Reilly F, Rao SN, Stobie N (2003) Coloured electrochromic “paper-quality” displays based on modified mesoporous electrodes. Solid State Ionics 165:315–321

    Article  Google Scholar 

  95. Xiong S, Phua SL, Dunn BS, Ma J, Lu X (2010) Covalently bonded polyaniline–TiO2 hybrids: a facile approach to highly stable anodic electrochromic materials with low oxidation potentials. Chem Mater 22:255–260

    Article  Google Scholar 

  96. Hwang T, Lee H, Kim H, Kim G, Mun G (2010) Enhancement of electrochemical durability of a film made of silica-polyaniline core-shell nanoparticles. Surf Review Lett 17:39–44

    Article  Google Scholar 

  97. Shiping L, Lin X, Bingbing X (2009) Electrochromism of polyoxometalates. Prog Chem 21:1458–1464

    Google Scholar 

  98. Ghodsi FE, Tepehan FZ, Tepehan GG (2008) Electrochromic properties of heat-treatment thin fims of CeO2–TiO2–ZrO2 prepared by Sol-Gel route. Sol Energy Mater Sol Cells 92:234–239

    Article  Google Scholar 

  99. Akhavan D, Tohidi H, Moshlegh AZ (2009) Synthesis and electrochromic study of Sol-Gel cuprous oxide nanoparticles accumulated on silica thin films. Thin Solid Films 517:6700–6706

    Article  Google Scholar 

  100. Granqvist CG (1993) Electrochromics and smart windows. Solid State Ionics 60:213–214

    Article  Google Scholar 

  101. Vaivars G, Furlani M, Mellander B-E, Granqvist CG (2003) Proton-conducting zirconium phosphate/ poly(vinyl acetate)/glycerine gel electrolytes. J Solid State Electrochem 7:724–728

    Article  Google Scholar 

  102. Baetens R, Jelle BP, Gustavsen A (2010) Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: a state- of- the- art review. Sol Energy Mater Sol Cells 94:87–105

    Article  Google Scholar 

  103. Özer N, He Y, Lampert CM (1994) Ionic conductivity of tantalum oxide films prepared by the Sol-Gel process for electrochromic devices. In: Proceedings of SPIE optical materials technology for energy efficiency and solar energy conversion XIII 2255:456–466

    Google Scholar 

  104. Özer N, Lampert CM (1997) Structural and optical properties of Sol-Gel deposited proton conducting Ta2O5 films. J Sol-Gel Sci Technol 8:703–709

    Google Scholar 

  105. Hirano S, Yogo T, Sakamoto W, Takeichi Y, Ono S (2004) Processing of highly oriented LiNbO3 thin films through a metal-organic precursor solution. J Eur Ceramic Soc 24:435–440

    Article  Google Scholar 

  106. Granqvist CG, Avendaño E, Azens A (2003) Electrochromic coatings and devices: survey of some recent advances. Thin Solid Films 442:201–211

    Article  Google Scholar 

  107. Dahmouche K, Atik M, Mello NC, Bonagamba TJ, Panepucci H, Aegerter MA, Judeinstein P (1997) Investigation of new ion-conducting ORMOLYTES: structure and properties. J Sol-Gel Sci Technol 8:711–715

    Google Scholar 

  108. Judeinstein P, Titman J, Stamm M, Schmidt H (1994) Investigation of ion-conducting ormolytes: structure-property relationships. Chem Mater 6:127–134

    Article  Google Scholar 

  109. Heusing S, Niegisch N, Zapp P, Mennig M, Schmidt H, Krings LHN, Aartsen HJ (2000) Zur Entwicklung eines großflächigen elektrochromen Displayfensters aus Glas. In: Proceedings 74th Glastechnische Tagung Ulm, Germany, pp 278–281

    Google Scholar 

  110. Mennig M, Fink-Straube C, Heusing S, Kalleder A, Koch T, Munro B, Zapp P, Schmidt H (1999) Large area decorative and functional Sol-Gel coatings on glass. Thin Solid Films 1:343–344

    Google Scholar 

  111. Mennig M, Heusing S, Zapp P, Niegisch N, Schmidt H (2000) “Fabrication of large area, curved electrochromic modules for automotive application”. In: Proceedings 3rd International Conference on Coatings on Glass (ICCG), Maastricht, The Netherlands, p 787

    Google Scholar 

  112. Orel B, Opara Krašovec U, Lavrenčič Štangar U, Judeinstein P (1998) All Sol-Gel electrochromic devices with Li+ ionic conductor, WO3 electrochromic films and SnO2 counter-electrode films. J Sol-Gel Sci Technol 11:87–104

    Article  Google Scholar 

  113. Grošelj N, Gaberšček M, Opara Krašovec U, Orel B, Dražič G, Judeinstein P (1999) Electrical and IR spectroscopic studies of peroxopolytungstic acid/organic-inorganic hybrid gels. Solid State Ionics 125:125–133

    Article  Google Scholar 

  114. Orel B, Šurca Vuk A, Jese R, Lianos P, Stathatos E, Judeinstein P, Colomban Ph (2003) Development of Sol-Gel redox I3 /I electrolytes and their application in hybrid electrochromic device. Solid State Ionics 165:235–246

    Article  Google Scholar 

  115. Souza FL, Aegerter MA, Leite ER (2007) Solid hybrid polyelectrolyte with high performance in electrochromic devices: electrochemical stability and optical study. Sol Energy Mater Sol Cells 91:1825–1830 (also Electrochimica Acta 53:1635–1642)

    Article  Google Scholar 

  116. Barbosa P, Rodrigues L, Silva M, Smith M, Gonçalves A, Fortunato E (2010) Application of di-ureasil ormolytes based on lithium tetrafluoroborate in solid-state electrochromic displays. J Mater Chem 20:723–730 (See also Electrochimica Acta (2009) 54:1002–1009

    Article  Google Scholar 

  117. Costa RGF, Avellaneda CO, Pawlicka A, Heusing S, Aegerter MA (2008) Optoelectrochemical characterization of electrochromic devices with starch based solid electrolytes. Molec Cryst Liq Cryst 447:363–371

    Google Scholar 

  118. Avellaneda CO, Vieira DF, Al-Kalhout A, Heusing S, Leite ER, Pawlicka A, Aegerter MA (2008) All solid-state electrochromic devices with gelatine-based electrolyte. Sol Energy Mater Sol Cells 92:228–233 (also Electrochimica Acta (2007) 53:1648–1654)

    Article  Google Scholar 

  119. Al-Kalhout A, Vieira DF, Avellaneda CO, Leite ER, Aegerter MA, Pawlicka A (2010) Gelatin-based protonic electrolyte for electrochromic windows. Ionics 16:13–19

    Article  Google Scholar 

  120. Raphael E, Avellaneda CO, Aegerter MA, Silva MM, Pawlicka A (2012) Agar-based gel electrolyte for electrochromic device application. Mol Cryst Liq Cryst 554:1–9

    Article  Google Scholar 

  121. de Vries GC (1999) Electrochromic variable transmission glass for picture tubes. Electrochim Acta 44:3185–3195

    Article  Google Scholar 

  122. Nagai J, McMeeking GD, Saitoh Y (1999) Durability of electrochromic glazing. Sol Energy Mater Sol Cells 56:309–319

    Article  Google Scholar 

  123. Czanderna AW, Benson DK, Jorgensen GJ, Zhang J-G, Tracy CE, Deb SK (1999) Durability issues and service lifetime prediction of electrochromic windows for buildings applications. Sol Energy Mater Sol Cells 56:419–436

    Article  Google Scholar 

  124. Lynam NR, Agrawal A (1988) Automotive applications of chromogenic materials. In: Lampert CM, Granqvist CG, (eds) Proceedings of SPIE large-area chromogenics: materials and devices for transmittance control, Bellingham, Washington, USA, IS vol 4. pp 46–84

    Google Scholar 

  125. Lynam NR (1990) Smart windows for automobiles. In: International Congress and Exposition Detroit, Michigan 1990, SAE Technical Paper series (900419)

    Google Scholar 

  126. Judeinstein P, Livage J, Zarndiansky A, Rose R (1988) An “all gel” electrochromic device. Solid State Ionics 28–30 (part 2):1722–1725

    Google Scholar 

  127. Özer N, Tepehan F, Bozkurt N (1992) An “all-gel” electrochromic device. Thin Solid Films 219:193–198

    Article  Google Scholar 

  128. Macêdo MA, Aegerter MA (1994) Sol-Gel electrochromic device. J Sol-Gel Sci Technol 2:667–671

    Article  Google Scholar 

  129. Avellaneda CO, Dahmouche K, Bulhoes LOS, Pawlicka A (2000) Characterization of an all Sol-Gel electrochromic device WO3/ormolyte/CeO2–TiO2. J Sol-Gel Sci Technol 19:447–451

    Article  Google Scholar 

  130. Heusing S, Munro B, Zapp P, Mennig M, Schmidt H (1998) Effect of ITO and FTO conductive layers on switching properties of large area Sol-Gel electrochromic devices. In: Proceedings of International Meeting on Electrochromism, IME-3 (abstract)

    Google Scholar 

  131. Heusing S, Sun D-L, Otero-Anaya J, Aegerter MA (2006) Grey, brown and blue colouring Sol-Gel electrochromic devices. Thin Solid Films 502:240–245

    Article  Google Scholar 

  132. Orel B, Šurca A, Opara Krašovec U (1998) Recent progress in Sol-Gel derived electrochromic devices. Acta Chim Slov 45:487–506

    Google Scholar 

  133. Orel B, Opara Krašovec U, Maček M, Švegl F, Lavrenčič Štangar U (1999) Comparative studies of “all Sol-Gel” electrochromic devices with optically passive counter-electrode films, ormolyte Li+ ion-conductor and WO3 or Nb2O5 electrochromic films. Sol Energy Mater Sol Cells 56:343–373

    Article  Google Scholar 

  134. Özer N, Lampert CM (1998) Electrochemical characterization of Sol-Gel deposited coatings. Sol Energy Mater Sol Cells 54:147–156

    Article  Google Scholar 

  135. Al-Kalhout A, Heusing S, Aegerter MA (2006) Brown colouring electrochromic devices based on Sol-Gel NiO-TiO2 layers. In: Aegerter MA, Kirchoff V (ed) Proceedings 6th International Conference on Coatings on Glass and Plastics, Dresden, pp 161–164

    Google Scholar 

  136. Penyat P, Leyland N, McCormack DE, Colreavy J, Corr D, Pilai SC (2010) Rapid microwave synthesis of mesoporous TiO2 for electrochromics displays. J Mater Chem 20:3650–3655

    Article  Google Scholar 

  137. See www.ntera.com

  138. Edwards MOM, Boschloo G, Gruszecki T, Petterson H, Sohlberg R, Hagfeldt A (2001) “Electric-paint displays” with carbon counter electrode. Electrochim Acta 46:2187–2193

    Article  Google Scholar 

  139. Georg A, Graf W, Opara Krasovec U, Schulz J, Orel B, Wittwer V (2004) Gasochromic coatings, in Sol-Gel technologies for glass producers and users. In: Aegerter MA, Mennig M (ed) Sol-Gel technologies for glass producers and users, Kluwer, The Netherlands

    Google Scholar 

  140. Kraft A, Rottmann M, Heckner KH (2006) Large-area electrochromic glazing with ion-conducting PVB interlayer and two complementary electrodeposited electrochromic layers. Sol Energy Mater Sol Cells 90:469. http://www.gesimat.de

    Google Scholar 

  141. http://www.econtrol-glas.de/home/

  142. http://www.flachglas-markenkreis.de/deu/data/content2seite.php?menu_id=542

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Aegerter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 © Springer Science+Business Media New York

About this chapter

Cite this chapter

Heusing, S., Aegerter, M.A. (2012). Sol-Gel Coatings For Electrochromic Devices. In: Aparicio, M., Jitianu, A., Klein, L. (eds) Sol-Gel Processing for Conventional and Alternative Energy. Advances in Sol-Gel Derived Materials and Technologies. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1957-0_12

Download citation

Publish with us

Policies and ethics