Skip to main content

Symmetry in Mathematical Programming

  • Conference paper
  • First Online:
Mixed Integer Nonlinear Programming

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 154))

Abstract

Symmetry is mainly exploited in mathematical programming in order to reduce the computation times of enumerative algorithms. The most widespread approach rests on: (a) finding symmetries in the problem instance; (b) reformulating the problem so that it does not allow some of the symmetric optima; (c) solving the modified problem. Sometimes (b) and (c) are performed concurrently: the solution algorithm generates a sequence of subproblems, some of which are recognized to be symmetrically equivalent and either discarded or treated differently. We review symmetry-based analyses and methods for Linear Programming, Integer Linear Programming, Mixed-Integer Linear Programming and Semidefinite Programming. We then discuss a method (introduced in [36]) for automatically detecting symmetries of general (nonconvex) Nonlinear and Mixed-Integer Nonlinear Programming problems and a reformulation based on adjoining symmetry breaking constraints to the original formulation. We finally present a new theoretical and computational study of the formulation symmetries of the Kissing Number Problem.

AMS(MOS) subject classifications. 90C11, 90C26, 90C30, 05C25, 20B25.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Alizadeh. Interior point methods in Semidefinite Programming with applications to combinatorial optimization. SIAM Journal on Optimization, 5(1):13–51, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  2. R. Allenby. Rings, Fields and Groups: an Introduction to Abstract Algebra. Edward Arnold, London, 1991.

    MATH  Google Scholar 

  3. L. Babai. Automorphism groups, isomorphism, reconstruction. In R. Graham, M. Gr¨otschel, and L. Lov´asz, editors, Handbook of Combinatorics, Vol. 2, pages 1447–1540. MIT Press, Cambridge, MA, 1996.

    Google Scholar 

  4. C. Bachoc and F. Vallentin. New upper bounds for kissing numbers from Semidefinite Programming. Journal of the American Mathematical Society, 21:909–924, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  5. D. Bell. Constructive group relaxations for integer programs. SIAM Journal on Applied Mathematics, 30(4):708–719, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  6. P. Belotti, J. Lee, L. Liberti, F. Margot, and A. W¨achter. Branching and bounds tightening techniques for non-convex MINLP. Optimization Methods and Software, 24(4):597–634, 2009.

    Google Scholar 

  7. T. Berthold and M. Pfetsch. Detecting orbitopal symmetries. In B. Fleischmann, K.-H. Borgwardt, R. Klein, and A. Tuma, editors, Operations Research Proceedings 2008, pages 433–438, Berlin, 2009. Springer.

    Google Scholar 

  8. K. Booth and C. Colbourn. Problems polynomially equivalent to graph isomorphism. Technical Report CS-77-04, University of Waterloo, 1979.

    Google Scholar 

  9. M. Boulle. Compact mathematical formulation for graph partitioning. Optimization and Engineering, 5:315–333, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Clark. Elements of Abstract Algebra. Dover, New York, 1984.

    Google Scholar 

  11. D. Cohen, P. Jeavons, C. Jefferson, K. Petrie, and B. Smith. Symmetry definitions for constraint satisfaction problems. In P. van Beek, editor, Constraint Programming, Vol. 3709 of LNCS. Springer, 2005.

    Google Scholar 

  12. A. Costa, P. Hansen, and L. Liberti. Formulation symmetries in circle packing. In R. Mahjoub, editor, Proceedings of the International Symposium on Combinatorial Optimization, Vol. 36 of Electronic Notes in Discrete Mathematics, pages 1303–1310, Amsterdam, 2010. Elsevier.

    Google Scholar 

  13. J. Crawford, M. Ginsberg, E. Luks, and A. Roy. Symmetry-breaking predicates for search problems. In Principles of Knowledge Representation and Reasoning, pages 148–159, Cambridge, MA, 1996. Morgan Kaufmann.

    Google Scholar 

  14. Ph. Delsarte. Bounds for unrestricted codes by linear programming. Philips Research Reports, 27:272–289, 1972.

    MATH  MathSciNet  Google Scholar 

  15. Y. Faenza and V. Kaibel. Extended formulations for packing and partitioning orbitopes. Mathematics of Operations Research, 34(3):686–697, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  16. R. Fourer and D. Gay. The AMPL Book. Duxbury Press, Pacific Grove, 2002.

    Google Scholar 

  17. E.J. Friedman. Fundamental domains for integer programs with symmetries. In A. Dress, Y. Xu, and B. Zhu, editors, COCOA Proceedings, Vol. 4616 of LNCS, pages 146–153. Springer, 2007.

    Google Scholar 

  18. The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.4.10, 2007.

    Google Scholar 

  19. K. Gatermann and P. Parrilo. Symmetry groups, Semidefinite Programs and sums of squares. Journal of Pure and Applied Algebra, 192:95–128, 2004.

    MATH  MathSciNet  Google Scholar 

  20. R. Gomory. Some polyhedra related to combinatorial problems. Linear Algebra and Its Applications, 2(4):451–558, 1969.

    Article  MATH  MathSciNet  Google Scholar 

  21. M. Hall. Theory of Groups. Chelsea Publishing Company, New York, 2nd edition, 1976.

    MATH  Google Scholar 

  22. P. Hansen and N. Mladenovi´c. Variable neighbourhood search: Principles and applications. European Journal of Operations Research, 130:449–467, 2001.

    Google Scholar 

  23. K. Herr and R. B¨odi. Symmetries in linear and integer programs. Technical Report 0908.3329v1 [math.CO], arXiv.org, 2009.

    Google Scholar 

  24. ILOG. ILOG CPLEX 11.0 User’s Manual. ILOG S.A., Gentilly, France, 2008.

    Google Scholar 

  25. E. Johnson. Integer Programming: Facets, Subadditivity and Duality for Group and Semi-group Problems. SIAM, Philadelphia, 1980.

    Book  MATH  Google Scholar 

  26. V. Kaibel and M. Pfetsch. Packing and partitioning orbitopes. Mathematical Programming, 114(1):1–36, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  27. Y. Kanno, M. Ohsaki, K. Murota, and N. Katoh. Group symmetry in interiorpoint methods for Semidefinite Program. Optimization and Engineering, 2:293–320, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  28. E. De Klerk and R. Sotirov. Exploiting group symmetry in Semidefinite Programming relaxations of the quadratic assignment problem. Mathematical Programming, 122(2):225–246, 2010.

    Article  MATH  MathSciNet  Google Scholar 

  29. D.E. Knuth. The Art of Computer Programming, Part I: Fundamental Algorithms. Addison-Wesley, Reading, MA, 1968.

    Google Scholar 

  30. S. Kucherenko, P. Belotti, L. Liberti, and N. Maculan. New formulations for the kissing number problem. Discrete Applied Mathematics, 155(14):1837–1841, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  31. J. Lee and F. Margot. On a binary-encoded ILP coloring formulation. INFORMS Journal on Computing, 19(3):406–415, 2007.

    Article  MathSciNet  Google Scholar 

  32. L. Liberti. Writing global optimization software. In L. Liberti and N. Maculan, editors, Global Optimization: from Theory to Implementation, pages 211–262. Springer, Berlin, 2006.

    Google Scholar 

  33. L. Liberti. Automatic generation of symmetry-breaking constraints. In B. Yang, D.-Z. Du, and C.A. Wang, editors, COCOA Proceedings, Vol. 5165 of LNCS, pages 328–338, Berlin, 2008. Springer.

    Google Scholar 

  34. L. Liberti. Reformulations in mathematical programming: Symmetry. Technical Report 2165, Optimization Online, 2008.

    Google Scholar 

  35. L. Liberti. Reformulations in mathematical programming: Definitions and systematics. RAIRO-RO, 43(1):55–86, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  36. L. Liberti. Reformulations in mathematical programming: Automatic symmetry detection and exploitation. Mathematical Programming, DOI 10.1007/s10107-010-0351-0.

  37. L. Liberti, S. Cafieri, and F. Tarissan. Reformulations in mathematical programming: A computational approach. In A. Abraham, A.-E. Hassanien, P. Siarry, and A. Engelbrecht, editors, Foundations of Computational Intelligence Vol. 3, number 203 in Studies in Computational Intelligence, pages

    Google Scholar 

  38. 153–234. Springer, Berlin, 2009.

    Google Scholar 

  39. L. Liberti, N. Mladenovi´c, and G. Nannicini. A good recipe for solving MINLPs. In V. Maniezzo, T. St¨utzle, and S. Voß, editors, Hybridizing metaheuristics and mathematical programming, Vol. 10 of Annals of Information Systems, pages 231–244, New York, 2009. Springer.

    Google Scholar 

  40. F. Margot. Pruning by isomorphism in branch-and-cut. Mathematical Programming, 94:71–90, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  41. F. Margot. Exploiting orbits in symmetric ILP. Mathematical Programming B, 98:3–21, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  42. F. Margot. Small covering designs by branch-and-cut. Mathematical Programming B, 94:207–220, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  43. F. Margot. Symmetric ILP: coloring and small integers. Discrete Optimization, 4:40–62, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  44. F. Margot. Symmetry in integer linear programming. In M. J¨unger, T. Liebling, D. Naddef, G. Nemhauser, W. Pulleyblank, G. Reinelt, G. Rinaldi, and L. Wolsey, editors, 50 Years of Integer Programming, pages 647–681. Springer, Berlin, 2010.

    Google Scholar 

  45. B. McKay. Practical graph isomorphism. Congressus Numerantium, 30:45–87, 1981.

    MathSciNet  Google Scholar 

  46. B. McKay. nauty User’s Guide (Version 2.4). Computer Science Dept. , Australian National University, 2007.

    Google Scholar 

  47. C. Mears, M. Garcia de la Banda, and M. Wallace. On implementing symmetry detection. Constraints, 14(2009):443–477, 2009.

    MATH  MathSciNet  Google Scholar 

  48. C. Mears, M. Garcia de la Banda, M. Wallace, and B. Demoen. A novel approach for detecting symmetries in CSP models. In L. Perron and M. Trick, editors, Constraint Programming, Artificial Intelligence and Operations Research, volume 5015 of LNCS, pages 158–172, New York, 2008. Springer.

    Google Scholar 

  49. O. Musin. The kissing number in four dimensions. arXiv:math.MG/0309430v2, April 2005.

    Google Scholar 

  50. A. Neumaier. Complete search in continuous global optimization and constraint satisfaction. Acta Numerica, 13:271–369, 2004.

    Article  MathSciNet  Google Scholar 

  51. J. Ostrowski, J. Linderoth, F. Rossi, and S. Smriglio. Orbital branching. In M. Fischetti and D.P. Williamson, editors, IPCO, volume 4513 of LNCS, pages 104–118. Springer, 2007.

    Google Scholar 

  52. J. Ostrowski, J. Linderoth, F. Rossi, and S. Smriglio. Constraint orbital branching. In A. Lodi, A. Panconesi, and G. Rinaldi, editors, IPCO, volume 5035 of LNCS, pages 225–239. Springer, 2008.

    Google Scholar 

  53. J.-F. Puget. Automatic detection of variable and value symmetries. In P. van Beek, editor, Constraint Programming, volume 3709 of LNCS, pages 475–489, New York, 2005. Springer.

    Google Scholar 

  54. A. Ramani and I. Markov. Automatically exploiting symmetries in constraint programming. In B. Faltings, A. Petcu, F. Fages, and F. Rossi, editors, Constraint Solving and Constraint Logic Programming, volume 3419 of LNAI, pages 98–112, Berlin, 2005. Springer.

    Google Scholar 

  55. S. Robertson. Polytopes and Symmetry. Cambridge University Press, Cambridge, 1984.

    MATH  Google Scholar 

  56. R.T. Rockafellar. A combinatorial algorithm for linear programs in the general mixed form. Journal of the Society for Industrial and Applied Mathematics, 12(1):215–225, 1964.

    Article  MATH  MathSciNet  Google Scholar 

  57. K.H. Rosen, editor. Handbook of Discrete and Combinatorial Mathematics. CRC Press, New York, 2000.

    MATH  Google Scholar 

  58. N.V. Sahinidis and M. Tawarmalani. BARON 7.2.5: Global Optimization of Mixed-Integer Nonlinear Programs, User’s Manual, 2005.

    Google Scholar 

  59. H. Schichl and A. Neumaier. Interval analysis on directed acyclic graphs for global optimization. Journal of Global Optimization, 33(4):541–562, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  60. K. Sch¨utte and B.L. van der Waerden. Das problem der dreizehn kugeln. Mathematische Annalen, 125:325–334, 1953.

    Google Scholar 

  61. A. Seress. Permutation Group Algorithms. Cambridge University Press, Cambridge, 2003.

    Book  MATH  Google Scholar 

  62. H. Sherali and C. Smith. Improving discrete model representations via symmetry considerations. Management Science, 47(10):1396–1407, 2001.

    Article  Google Scholar 

  63. E. Smith and C. Pantelides. A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs. Computers & Chemical Engineering, 23:457–478, 1999.

    Article  Google Scholar 

  64. G. Szpiro. Newton and the kissing problem. Plus magazine (online), 23, January 2003.

    Google Scholar 

  65. A.W. Tucker. A combinatorial equivalence of matrices. In R. Bellman and M. Hall, editors, Proceedings of the 10th Symposium of Applied Mathematics, pages 129–140, Providence, Rhode Island, 1960. AMS.

    Google Scholar 

  66. A.W. Tucker. Solving a matrix game by linear programming. IBM Journal of Research and Development, 4:507–517, 1960.

    Article  MATH  Google Scholar 

  67. A.W. Tucker. Combinatorial theory underlying linear programs. In L. Graves and P. Wolfe, editors, Recent Advances in Mathematical Programming. McGraw-Hill, New York, 1963.

    Google Scholar 

  68. R. Uehara, S. Toda, and T. Nagoya. Graph isomorphism completeness for chordal bipartite graphs and strongly chordal graphs. Discrete Applied Mathematics, 145:479–482, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  69. F. Vallentin. Symmetry in Semidefinite Programs. Linear Algebra and its Applications, 430:360–369, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  70. L. Wolsey. Group representation theory in integer programming. Technical Report Op. Res. Center 41, MIT, 1969.

    Google Scholar 

  71. W. Zhu. Unsolvability of some optimization problems. Applied Mathematics and Computation, 174:921–926, 2006.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo Liberti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Liberti, L. (2012). Symmetry in Mathematical Programming. In: Lee, J., Leyffer, S. (eds) Mixed Integer Nonlinear Programming. The IMA Volumes in Mathematics and its Applications, vol 154. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1927-3_9

Download citation

Publish with us

Policies and ethics