Skip to main content

The MILP Road to MIQCP

  • Conference paper
  • First Online:
Mixed Integer Nonlinear Programming

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 154))

Abstract

This paper surveys results on the NP-hard mixed-integer quadratically constrained programming problem. The focus is strong convex relaxations and valid inequalities, which can become the basis of efficient global techniques. In particular, we discuss relaxations and inequalities arising from the algebraic description of the problem as well as from dynamic procedures based on disjunctive programming. These methods can be viewed as generalizations of techiniques for mixed-integer linear programming. We also present brief computational results to indicate the strength and computational requirements of these methods.

Author supported in part by NSF Grant CCF-0545514.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Abhishek, S. Leyffer, and J.T. Linderoth, FilMINT: An outer-approximation-based solver for convex mixed-integer nonlinear programs, IN- FORMS Journal on Computing, 22 (2010), pp. 555–567.

    MathSciNet  Google Scholar 

  2. T.K. Achterberg, T. Berthold and K.T. Wolter, Constraint integer programming: A new approach to integrate cp and mip, Lecture Notes in Computer Science, 5015 (2008), pp. 6–20.

    Article  Google Scholar 

  3. F.A. Al-Khayyal, Generalized bilinear programming, Part i: Models, applications, and linear programming relaxations, European Journal of Operational Research, 60 (1992), pp. 306–314.

    MATH  Google Scholar 

  4. F.A. Al-Khayyal and J.E. Falk, Jointly constrained biconvex programming, Math. Oper. Res., 8 (1983), pp. 273–286.

    Article  MATH  MathSciNet  Google Scholar 

  5. F. Alizadeh and D. Goldfarb, Second-order cone programming, Math. Program., 95 (2003), pp. 3–51. ISMP 2000, Part 3 (Atlanta, GA).

    Google Scholar 

  6. K.M. Anstreicher and S. Burer, Computable representations for convex hulls of low-dimensional quadratic forms, with K. Anstreicher, Mathematical Programming (Series B), 124(1–2), pp. 33–43 (2010).

    Google Scholar 

  7. A. Atamt¨urk and V. Narayanan, Conic mixed-integer rounding cuts, Math. Program., 122 (2010), pp. 1–20.

    Google Scholar 

  8. E. Balas, Disjunctive programming: properties of the convex hull of feasible points, Discrete Appl. Math., 89 (1998), pp. 3–44.

    Article  MATH  MathSciNet  Google Scholar 

  9. E. Balas, S. Ceria, and G. Cornu´ejols, A lift-and-project cutting plane algorithm for mixed 0–1 programs, Mathematical Programming, 58 (1993), pp. 295–324.

    Google Scholar 

  10. A. Beck, Quadratic matrix programming, SIAM J. Optim., 17 (2006), pp. 1224–1238 (electronic).

    Google Scholar 

  11. P. Belotti, Disjunctive cuts for non-convex MINLP, IMA Volume Series, Springer 2010, accepted. http://myweb.clemson.edu/∼pbelott/papers/belotti-disj-MINLP.pdf.

  12. A. Ben-Tal and A. Nemirovski, On polyhedral approximations of the second-order cone, Math. Oper. Res., 26 (2001), pp. 193–205.

    Article  MATH  MathSciNet  Google Scholar 

  13. A. Berman and N. Shaked-Monderer, Completely Positive Matrices, World Scientific, 2003.

    Google Scholar 

  14. D. Bienstock and M. Zuckerberg, Subset algebra lift operators for 0–1 integer programming, SIAM J. Optim., 15 (2004), pp. 63–95 (electronic).

    Google Scholar 

  15. I. Bomze and F. Jarre, A note on Burer’s copositive representation of mixed-binary QPs, Optimization Letters, 4 (2010), pp. 465–472.

    Article  MATH  MathSciNet  Google Scholar 

  16. P. Bonami, L. Biegler, A. Conn, G. Cornu´ejols, I. Grossmann, C. Laird, J. Lee, A. Lodi, F. Margot, N. Sawaya, and A. W¨achter, An algorithmic framework for convex mixed-integer nonlinear programs., Discrete Optimiza- tion, 5 (2008), pp. 186–204.

    Google Scholar 

  17. S. Burer, Optimizing a polyhedral-semidefinite relaxation of completely positive programs, Mathematical Programming Computation, 2(1), pp 1–19 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  18. , On the copositive representation of binary and continuous nonconvex quadratic programs, Mathematical Programming, 120 (2009), pp. 479–495.

    Google Scholar 

  19. S. Burer and A.N. Letchford, On nonconvex quadratic programming with box constraints, SIAM J. Optim., 20 (2009), pp. 1073–1089.

    Article  MATH  MathSciNet  Google Scholar 

  20. S. Burer and D. Vandenbussche, Globally solving box-constrained nonconvex quadratic programs with semidefinite-based finite branch-and-bound, Comput. Optim. Appl., 43 (2009), pp. 181–195.

    Article  MATH  MathSciNet  Google Scholar 

  21. D. Coppersmith, O. G¨unl¨uk, J. Lee, and J. Leung, A polytope for a product of a real linear functions in 0/1 variables, manuscript, IBM, Yorktown Heights, NY, December 2003.

    Google Scholar 

  22. G. Cornu´ejols, Combinatorial optimization: packing and covering, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2001.

    Google Scholar 

  23. R.W. Cottle, G.J. Habetler, and C.E. Lemke, Quadratic forms semi-definite over convex cones, in Proceedings of the Princeton Symposium on Mathematical Programming (Princeton Univ., 1967), Princeton, N.J., 1970, Princeton Univ. Press, pp. 551–565.

    Google Scholar 

  24. G. Danninger and I.M. Bomze, Using copositivity for global optimality criteria in concave quadratic programming problems, Math. Programming, 62 (1993), pp. 575–580.

    Article  MATH  MathSciNet  Google Scholar 

  25. G. Dantzig, R. Fulkerson, and S. Johnson, Solution of a large-scale traveling-salesman problem, J. Operations Res. Soc. Amer., 2 (1954), pp. 393–410.

    MathSciNet  Google Scholar 

  26. E. de Klerk and D.V. Pasechnik, Approximation of the stability number of a graph via copositive programming, SIAM J. Optim., 12 (2002), pp. 875–892.

    Article  MATH  MathSciNet  Google Scholar 

  27. See the website: www.gamsworld.org/global/globallib/globalstat.htm.

  28. R. Horst and N.V. Thoai, DC programming: overview, J. Optim. Theory Appl., 103 (1999), pp. 1–43.

    Article  MathSciNet  Google Scholar 

  29. M. Jach, D. Michaels, and R. Weismantel, The convex envelope of (N − 1)-convex fucntions, SIAM J. Optim., 19 (2008), pp. 1451–1466.

    Article  MATH  MathSciNet  Google Scholar 

  30. R. Jeroslow, There cannot be any algorithm for integer programming with quadratic constraints., Operations Research, 21 (1973), pp. 221–224.

    Article  MATH  MathSciNet  Google Scholar 

  31. S. Kim and M. Kojima, Second order cone programming relaxation of non-convex quadratic optimization problems, Optim. Methods Softw., 15 (2001), pp. 201–224.

    Article  MATH  MathSciNet  Google Scholar 

  32. , Exact solutions of some nonconvex quadratic optimization problems via SDP and SOCP relaxations, Comput. Optim. Appl., 26 (2003), pp. 143–154.

    Google Scholar 

  33. M. Kojima and L. Tunc¸el, Cones of matrices and successive convex relaxations of nonconvex sets, SIAM J. Optim., 10 (2000), pp. 750–778.

    Google Scholar 

  34. J.B. Lasserre, Global optimization with polynomials and the problem of moments, SIAM J. Optim., 11 (2001), pp. 796–817.

    Article  MATH  MathSciNet  Google Scholar 

  35. M. Laurent, A comparison of the Sherali-Adams, Lov´asz-Schrijver, and Lasserre relaxations for 0–1 programming, Math. Oper. Res., 28 (2003), pp. 470–496.

    Article  MATH  MathSciNet  Google Scholar 

  36. J. Linderoth, A simplicial branch-and-bound algorithm for solving quadratically constrained quadratic programs, Math. Program., 103 (2005), pp. 251–282.

    Article  MATH  MathSciNet  Google Scholar 

  37. L. Lov´asz and A. Schrijver, Cones of matrices and set-functions and 0–1 optimization, SIAM Journal on Optimization, 1 (1991), pp. 166–190.

    Google Scholar 

  38. T. Matsui, NP-hardness of linear multiplicative programming and related problems, J. Global Optim., 9 (1996), pp. 113–119.

    Article  MATH  MathSciNet  Google Scholar 

  39. J.E. Maxfield and H. Minc, On the matrix equation X′X = A, Proc. Edinburgh Math. Soc. (2), 13 (1962/1963), pp. 125–129.

    Google Scholar 

  40. G.P. McCormick, Computability of global solutions to factorable nonconvex programs. I. Convex underestimating problems, Math. Programming, 10 (1976), pp. 147–175.

    Google Scholar 

  41. See the website: http://www.gamsworld.org/minlp/.

  42. K.G. Murty and S.N. Kabadi, Some NP-complete problems in quadratic and nonlinear programming, Math. Programming, 39 (1987), pp. 117–129.

    Article  MATH  MathSciNet  Google Scholar 

  43. G. Nemhauser and L. Wolsey, Integer and Combinatorial Optimization, Wiley-Interscience, 1999.

    Google Scholar 

  44. M. Padberg, The Boolean quadric polytope: some characteristics, facets and relatives, Math. Programming, 45 (1989), pp. 139–172.

    Article  MATH  MathSciNet  Google Scholar 

  45. P. Pardalos, Global optimization algorithms for linearly constrained indefinite quadratic problems, Computers and Mathematics with Applications, 21 (1991), pp. 87–97.

    Article  MATH  MathSciNet  Google Scholar 

  46. P.M. Pardalos and S.A. Vavasis, Quadratic programming with one negative eigenvalue is NP-hard, J. Global Optim., 1 (1991), pp. 15–22.

    Article  MATH  MathSciNet  Google Scholar 

  47. P. Parrilo, Structured Semidefinite Programs and Semi-algebraic Geometry Methods in Robustness and Optimization, PhD thesis, California Institute of Technology, 2000.

    Google Scholar 

  48. G. Pataki, On the rank of extreme matrices in semidefinite programs and the multiplicity of optimal eigenvalues, Mathematics of Operations Research, 23 (1998), pp. 339–358.

    Article  MATH  MathSciNet  Google Scholar 

  49. J. Povh and F. Rendl, A copositive programming approach to graph partitioning, SIAM J. Optim., 18 (2007), pp. 223–241.

    Article  MATH  MathSciNet  Google Scholar 

  50. , Copositive and semidefinite relaxations of the quadratic assignment problem, Discrete Optim., 6 (2009), pp. 231–241.

    Google Scholar 

  51. N.V. Sahinidis, BARON: a general purpose global optimization software package, J. Glob. Optim., 8 (1996), pp. 201–205.

    Article  MATH  MathSciNet  Google Scholar 

  52. A. Saxena, P. Bonami, and J. Lee, Convex relaxations of non-convex mixed integer quadratically constrained programs: Extended formulations, Mathematical Programming (Series B), 124(1–2), pp. 383–411 (2010). http://dx.doi.org/10.1007/s10107-010-0371-9.

  53. , Convex relaxations of non-convex mixed integer quadratically constrained programs: Projected formulations, 2010. To appear in Mathematical Programming. http://dx.doi.org/10.1007/s10107-010-0340-3.

  54. H.D. Sherali andW.P. Adams, A hierarchy of relaxations between the continuous and convex hull representations for zero–one programming problems, SIAM J. Discrete Math., 3 (1990), pp. 411–430.

    Google Scholar 

  55. H.D. Sherali andW.P. Adams, A Reformulation–linearization Technique (RLT) for Solving Discrete and Continuous Nonconvex Problems, Kluwer, 1997.

    Google Scholar 

  56. N. Shor, Quadratic optimization problems, Soviet Journal of Computer and Systems Science, 25 (1987), pp. 1–11. Originally published in Tekhnicheskaya Kibernetika, 1:128–139, 1987.

    Google Scholar 

  57. J.F. Sturm and S. Zhang, On cones of nonnegative quadratic functions, Math. Oper. Res., 28 (2003), pp. 246–267.

    Article  MATH  MathSciNet  Google Scholar 

  58. M. Tawarmalani and N.V. Sahinidis, Convexification and global optimization in continuous and mixed-integer nonlinear programming, Vol. 65 of Nonconvex Optimization and its Applications, Kluwer Academic Publishers, Dordrecht, 2002. Theory, algorithms, software, and applications.

    Google Scholar 

  59. J.P. Vielma, S. Ahmed, and G.L. Nemhauser, A lifted linear programming branch-and-bound algorithm for mixed-integer conic quadratic programs, INFORMS J. Comput., 20 (2008), pp. 438–450.

    Article  MathSciNet  Google Scholar 

  60. Y. Yajima and T. Fujie, A polyhedral approach for nonconvex quadratic programming problems with box constraints, J. Global Optim., 13 (1998), pp. 151–170.

    Article  MATH  MathSciNet  Google Scholar 

  61. Y. Ye and S. Zhang, New results on quadratic minimization, SIAM J. Optim., 14 (2003), pp. 245–267 (electronic).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Burer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Burer, S., Saxena, A. (2012). The MILP Road to MIQCP. In: Lee, J., Leyffer, S. (eds) Mixed Integer Nonlinear Programming. The IMA Volumes in Mathematics and its Applications, vol 154. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1927-3_13

Download citation

Publish with us

Policies and ethics