Skip to main content
  • 531 Accesses

Abstract

The paramount goal of this work is the strive towards improving the technological aspects of treating tumours that move with respiration. We believe that, for optimal medical outcome, optimal technological support is required and improving the tracking and targeting accuracy of current radiotherapeutic devices is necessary. Although many different methods for on-line tumour tracking exist (see chapter 2), focus was placed on the CyberKnife system and the CyberHeart project (see section 2.5), an extension to the CyberKnife currently under development. In this context, the current technological problems were investigated. Amongst others, these are

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Association of Physicists in Medicine: Annual Meeting of the AAPM, vol. 51 (2009)

    Google Scholar 

  2. Bartz, D., Bohn, S., Hoffmann, J. (eds.): Jahrestagung der Deutschen Gesellschaft f¨ur Computer- und Roboterassistierte Chirurgie, vol. 7. CURAC, Leipzig,Germany (2008)

    Google Scholar 

  3. Bruder, R., Ernst, F., Schlaefer, A., Schweikard, A.: Real-time tracking of the pulmonary veins in 3D ultrasound of the beating heart. In: 51st Annual Meeting of the AAPM [1], p. 2804. DOI 10.1118/1.3182643. TH-C-304A-07

  4. Cavedon, C., Francescon, P., Cora, S., Moschini, G., Rossi, P.: Performance of a motion tracking system during cyberknife robotic radiosurgery. AIP Conference Proceedings 1099(1), 464–467 (2009). DOI 10.1063/1.3120074

    Article  Google Scholar 

  5. Ernst, F., Koch, C., Schweikard, A.: A novel recording tool for education and quality assurance in digital angiography. In: 2010 Annual Meeting of the RSNA (2010)

    Google Scholar 

  6. Ernst, F., Stender, B., Schlaefer, A., Schweikard, A.: Using ECG in motion prediction for radiosurgery of the beating heart. In: G.Z. Yang, A. Darzi (eds.) The Hamlyn Symposium on Medical Robotics, vol. 3, pp. 37–38 (2010)

    Google Scholar 

  7. George, R., Vedam, S.S., Chung, T.D., Ramakrishnan, V., Keall, P.J.: The application of the sinusoidal model to lung cancer patient respiratory motion. Medical Physics 32(9), 2850–2861 (2005). DOI 10.1118/1.2001220

    Article  Google Scholar 

  8. Goodband, J.H., Haas, O.C.L., Mills, J.A.: A comparison of neural network approaches for on-line prediction in IGRT. Medical Physics 35(3), 1113–1122 (2008). DOI 10.1118/1.2836416

    Article  Google Scholar 

  9. Hoisak, J.D.P., Sixel, K.E., Tirona, R., Cheung, P.C.F., Pignol, J.P.: Prediction of lung tumour position based on spirometry and on abdominal displacement : Accuracy and reproducibility. Radiotherapy and Oncology 78(3), 339–346 (2006). DOI 10.1016/j.radonc.2006.01.008

    Article  Google Scholar 

  10. Hoogeman, M., Pr´evost, J.B., Nuyttens, J., P¨oll, J., Levendag, P., Heijmen, B.: Clinical accuracy of the respiratory tumor tracking system of the CyberKnife: Assessment by analysis of log files. International Journal of Radiation Oncology, Biology, Physics 74(1), 297–303 (2009). DOI 10.1016/j.ijrobp.2008.12.041

    Google Scholar 

  11. Isaaksson, M., Jald´en, J., Murphy, M.J.: On using an adaptive neural network to predict lung tumor motion during respiration for radiotherapy applications. Medical Physics 32(12), 3801–3809 (2005). DOI 10.1118/1.2134958

    Google Scholar 

  12. Jald´en, J., Isaaksson, M.: Temporal prediction and spatial correlation of breathing motion by adaptive filtering. Tech. rep., Stanford University, Stanford, CA (2001)

    Google Scholar 

  13. Kakar, M., Nystr¨om, H., Aarup, L.R., Nøttrup, T.J., Olsen, D.R.: Respiratory motion prediction by using the adaptive neuro fuzzy inference system (ANFIS). Physics in Medicine and Biology 50, 4721–4728 (2005). DOI 10.1088/0031-9155/50/19/020

  14. Kanoulas, E., Aslam, J.A., Sharp, G.C., Berbeco, R.I., Nishioka, S., Shirato, H., Jiang, S.B.: Derivation of the tumor position from external respiratory surrogates with periodical updating of the internal/external correlation. Physics in Medicine and Biology 52(17), 5443–5456 (2007). DOI 10.1088/0031- 9155/52/17/023

    Article  Google Scholar 

  15. Khamene, A., Warzelhan, J.K., Vogt, S., Elgort, D., Chefd’Hotel, C., Duerk, J.L., Lewin, J., Wacker, F.K., Sauer, F.: Characterization of internal organ motion using skin marker positions. In: C. Barillot, D.R. Haynor, P. Hellier (eds.) MICCAI 2004, Part II, LNCS, vol. 3217, pp. 526–533. MICCAI, Springer, St. Malo, France (2004)

    Google Scholar 

  16. Kilby, W.: Accuray, Inc. Private communication (Sep., 2009, and Oct., 2010)

    Google Scholar 

  17. Martens, V., Ernst, F., Fr¨ankler, T., Matth¨aus, L., Schlichting, S., Schweikard, A.: Ein Client–server Framework f¨ur Trackingsysteme in medizinischen Assistenzsystemen. In: Bartz et al. [2], pp. 7–10

    Google Scholar 

  18. McCall, K.C., Jeraj, R.: Dual-component model of respiratory motion based on the periodic autoregressive moving average (periodic ARMA) method. Physics in Medicine and Biology 52(12), 3455–3466 (2007). DOI 10.1088/0031- 9155/52/12/009

    Article  Google Scholar 

  19. Murphy, M.J.: Techniques of breathing prediction for real-time motion adaptation. In: RTMART Workshop 2009. Institute for Robotics, University of L¨ubeck, Institute for Robotics, University of L¨ubeck, L¨ubeck, Germany (2009)

    Google Scholar 

  20. Murphy, M.J., Dieterich, S.: Comparative performance of linear and nonlinear neural networks to predict irregular breathing. Physics in Medicine and Biology 51(22), 5903–5914 (2006). DOI 10.1088/0031-9155/51/22/012

    Article  Google Scholar 

  21. Murphy, M.J., Isaaksson, M., Jald´en, J.: Adaptive filtering to predict lung tumor breathing motion during imageguided radiation therapy. In: Proceedingsof the 16th International Conference and Exhibition on Computer Assisted Radiology and Surgery (CARS’02), vol. 16, pp. 539–544. Paris, France (2002)

    Google Scholar 

  22. Murphy, M.J., Pokhrel, D.: Optimization of an adaptive neural network to predict breathing. Medical Physics 36(1), 40–47 (2009). DOI 10.1118/1.3026608

    Article  Google Scholar 

  23. Putra, D., Haas, O.C.L., Mills, J.A., Burnham, K.J.: A multiple model approach to respiratory motion prediction for real-time IGRT. Physics in Medicine and Biology 53(6), 1651–1663 (2008). DOI 10.1088/0031-9155/53/6/010

    Article  Google Scholar 

  24. Ren, Q., Nishioka, S., Shirato, H., Berbeco, R.I.: Adaptive prediction of respiratory motion for motion compensation radiotherapy. Physics in Medicine and Biology 52(22), 6651–6661 (2007). DOI 10.1088/0031-9155/52/22/007

    Article  Google Scholar 

  25. Richter, L., Ernst, F., Martens, V., Matth¨aus, L., Schweikard, A.: Client/server framework for robot control in medical assistance systems. In: Proceedings of the 24th International Congress and Exhibition on Computer Assisted Radiology and Surgery (CARS’10), International Journal of Computer Assisted Radiology and Surgery, vol. 5, pp. 306–307. CARS, Geneva, Switzerland (2010)

    Google Scholar 

  26. Riesner, S.: Korrelations- und Pr¨adiktionsverfahren zur Lageverfolgung in der perkutanen Radioonkologie. Ph.D. thesis, Technische Universit¨at M¨unchen (2004)

    Google Scholar 

  27. Riviere, C.N., Thakral, A., Iordachita, I.I., Mitroi, G., Stoianovici, D.: Predicting respiratory motion for active canceling during percutaneous needle insertion. In: Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 4, pp. 3477–3480 (2001)

    Google Scholar 

  28. Ruan, D., Fessler, J.A., Balter, J.M.: Real-time prediction of respiratory motion based on local regression methods. Physics in Medicine and Biology 52(23), 7137–7152 (2007). DOI 10.1088/0031-9155/52/23/024

    Article  Google Scholar 

  29. Rzezovski, N., Ernst, F.: Graphical tool for the prediction of respiratory motion signals. In: Bartz et al. [2], pp. 179–180

    Google Scholar 

  30. Sahih, A., Haas, O.C.L., Goodband, J.H., Putra, D., Mills, J.A., Burnham, K.J.: Respiratory motion prediction for adaptive radiotherapy. In: IAR – ACD 2006. German-French Institute for Automation and Robotics, Nancy, France (2006)

    Google Scholar 

  31. Sayeh, S.,Wang, J., Main,W.T., Kilby,W., Maurer Jr., C.R.: Robotic Radiosurgery. Treating Tumors that Move with Respiration, 1st edn., chap. Respiratory motion tracking for robotic radiosurgery, pp. 15–30. Springer, Berlin (2007). DOI 10.1007/978-3-540-69886-9

  32. Schweikard, A., Glosser, G., Bodduluri, M., Murphy, M.J., Adler Jr., J.R.: Robotic Motion Compensation for Respiratory Movement during Radiosurgery. Journal of Computer-Aided Surgery 5(4), 263–277 (2000). DOI 10.3109/10929080009148894

    Article  Google Scholar 

  33. Schweikard, A., Shiomi, H., Adler Jr., J.R.: Respiration tracking in radiosurgery. Medical Physics 31(10), 2738–2741 (2004). DOI 10.1118/1.1774132

    Article  Google Scholar 

  34. Seppenwoolde, Y., Berbeco, R.I., Nishioka, S., Shirato, H., Heijmen, B.: Accuracy of tumor motion compensation algorithm from a robotic respiratory tracking system: A simulation study. Medical Physics 34(7), 2774–2784 (2007). DOI 10.1118/1.2739811

    Article  Google Scholar 

  35. Sharp, G.C., Jiang, S.B., Shimizu, S., Shirato, H.: Prediction of respiratory tumour motion for real-time image-guided radiotherapy. Physics in Medicine and Biology 49(3), 425–440 (2004). DOI 10.1088/0031-9155/49/3/006

    Article  Google Scholar 

  36. Sheng, Y., Li, S., Sayeh, S., Wang, J., Wang, H.: Fuzzy and hybrid prediction of position signal in SynchronyˆA _R respiratory tracking system. In: R.J.P.de Figueiredo (ed.) SIP 2007, pp. 459–464. IASTED, Acta Press, Honolulu, USA (2007)

    Google Scholar 

  37. Shirato, H., Seppenwoolde, Y., Kitamura, K., Onimura, R., Shimizu, S.: Intrafractional tumor motion: Lung and liver. Seminars in Radiation Oncology 14(1), 10–18 (2004)

    Article  Google Scholar 

  38. Suh, Y., Dieterich, S., Cho, B.C., Keall, P.J.: An analysis of thoracic and abdominal tumour motion for stereotactic body radiotherapy patients. Physics in Medicine and Biology 53(13), 3623–3640 (2008). DOI 10.1088/0031- 9155/53/13/016

    Article  Google Scholar 

  39. Vedam, S.S., Keall, P.J., Docef, A., Todor, D.A., Kini, V.R., Mohan, R.: Predicting respiratory motion for four-dimensional radiotherapy. Medical Physics 31(8), 2274–2283 (2004). DOI 10.1118/1.1771931

    Article  Google Scholar 

  40. Wong, K.H., Dieterich, S., Tang, J., Cleary, K.: Quantitative measurement of CyberKnife robotic arm steering. Technology in Cancer Research and Treatment 6(6), 589–594 (2007)

    Google Scholar 

  41. Wu, H., Zhang, Y., Zhao, Q., Lord, B.: Assessment of lung tumors treatment accuracy using CyberKnife Synchrony model. In: 51st Annual Meeting of the AAPM [1], p. 2463. DOI 10.1118/1.3181243. SU-FF-I-122

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ernst, F. (2012). Conclusion. In: Compensating for Quasi-periodic Motion in Robotic Radiosurgery. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1912-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1912-9_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1911-2

  • Online ISBN: 978-1-4614-1912-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics